Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Agonists for neuropeptide Y receptor subtypes NPY-1 and NPY-2 have opposite actions on rat nodose neuron calcium currents

Agonists for neuropeptide Y receptor subtypes NPY-1 and NPY-2 have opposite actions on rat nodose... Abstract 1. The whole-cell variation of the patch-clamp technique was used to study the effect of neuropeptide Y (NPY) and preferential agonists for the NPY-1 and NPY-2 receptor subtypes on voltage-dependent calcium currents in acutely dissociated postnatal rat nodose ganglion neurons. 2. Both low- and high-threshold calcium current components were present. NPY altered voltage-dependent calcium currents in approximately 50% of neurons studied. NPY (0.1-100 nM, ED50 6 nM) decreased the peak amplitude of transient high-threshold calcium currents in approximately 45% of the neurons. NPY (100 nM) decreased the peak amplitude of these currents 31 +/- 5% (mean +/- SE). However, in approximately 5% of the neurons NPY (100 nM) caused a reversible and reproducible increase in transient high-threshold calcium currents of 21 +/- 4%. NPY did not affect either transient low-threshold or slowly inactivating high-threshold calcium current components. 3. Application of the C-terminal fragment NPY 13-36 (100 nM), a preferential agonist for NPY-2 receptors, reversibly decreased the peak amplitude of transient high-threshold calcium currents by 26 +/- 5% in 9 of 20 cells (45%). Application of Pro34-NPY (100 nM), a preferential agonist for NPY-1 receptors, reversibly increased the peak amplitude of transient high-threshold calcium currents 20 +/- 4% in 23 out of 48 neurons (48%). Six of 20 neurons (30%) responded to application of both agonists. Neither the NPY-1 nor NPY-2 agonists affected transient low-threshold or slowly inactivating high-threshold calcium current components.(ABSTRACT TRUNCATED AT 250 WORDS) Copyright © 1993 the American Physiological Society http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Neurophysiology The American Physiological Society

Agonists for neuropeptide Y receptor subtypes NPY-1 and NPY-2 have opposite actions on rat nodose neuron calcium currents

Journal of Neurophysiology , Volume 70 (1): 324 – Jul 1, 1993

Loading next page...
 
/lp/the-american-physiological-society/agonists-for-neuropeptide-y-receptor-subtypes-npy-1-and-npy-2-have-YdUYqg7Rfh

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
The American Physiological Society
Copyright
Copyright © 1993 the American Physiological Society
ISSN
0022-3077
eISSN
1522-1598
Publisher site
See Article on Publisher Site

Abstract

Abstract 1. The whole-cell variation of the patch-clamp technique was used to study the effect of neuropeptide Y (NPY) and preferential agonists for the NPY-1 and NPY-2 receptor subtypes on voltage-dependent calcium currents in acutely dissociated postnatal rat nodose ganglion neurons. 2. Both low- and high-threshold calcium current components were present. NPY altered voltage-dependent calcium currents in approximately 50% of neurons studied. NPY (0.1-100 nM, ED50 6 nM) decreased the peak amplitude of transient high-threshold calcium currents in approximately 45% of the neurons. NPY (100 nM) decreased the peak amplitude of these currents 31 +/- 5% (mean +/- SE). However, in approximately 5% of the neurons NPY (100 nM) caused a reversible and reproducible increase in transient high-threshold calcium currents of 21 +/- 4%. NPY did not affect either transient low-threshold or slowly inactivating high-threshold calcium current components. 3. Application of the C-terminal fragment NPY 13-36 (100 nM), a preferential agonist for NPY-2 receptors, reversibly decreased the peak amplitude of transient high-threshold calcium currents by 26 +/- 5% in 9 of 20 cells (45%). Application of Pro34-NPY (100 nM), a preferential agonist for NPY-1 receptors, reversibly increased the peak amplitude of transient high-threshold calcium currents 20 +/- 4% in 23 out of 48 neurons (48%). Six of 20 neurons (30%) responded to application of both agonists. Neither the NPY-1 nor NPY-2 agonists affected transient low-threshold or slowly inactivating high-threshold calcium current components.(ABSTRACT TRUNCATED AT 250 WORDS) Copyright © 1993 the American Physiological Society

Journal

Journal of NeurophysiologyThe American Physiological Society

Published: Jul 1, 1993

There are no references for this article.