Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Using time-varying quantile regression approaches to model the influence of prenatal and infant exposures on childhood growth

Using time-varying quantile regression approaches to model the influence of prenatal and infant... For many applications, it is valuable to assess whether the effects of exposures over time vary by quantiles of the outcome. We have previously shown that quantile methods complement the traditional mean-based analyses, and are useful for studies of body size. Here, we extended previous work to time-varying quantile associations. Using data from over 18,000 children in the U.S. Collaborative Perinatal Project, we investigated the impact of maternal pre-pregnancy body mass index (BMI), maternal pregnancy weight gain, placental weight, and birth weight on childhood body size measured 4 times between 3 months and 7 years, using both parametric and non-parametric time-varying quantile regressions. Using our proposed model assessment tool, we found that non-parametric models fit the childhood growth data better than the parametric approaches. We also observed that quantile analysis resulted in difference inferences than the conditional mean models in three of the four constructs (maternal per-pregancy BMI, maternal weight gain, and placental weight). Overall, these results suggest the utility of applying time-varying quantile models for longitudinal outcome data. They also suggest that in the studies of body size, merely modelling the conditional mean may lead to incomplete summary of the data. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biostatistics & Epidemiology Taylor & Francis

Using time-varying quantile regression approaches to model the influence of prenatal and infant exposures on childhood growth

Using time-varying quantile regression approaches to model the influence of prenatal and infant exposures on childhood growth

Abstract

For many applications, it is valuable to assess whether the effects of exposures over time vary by quantiles of the outcome. We have previously shown that quantile methods complement the traditional mean-based analyses, and are useful for studies of body size. Here, we extended previous work to time-varying quantile associations. Using data from over 18,000 children in the U.S. Collaborative Perinatal Project, we investigated the impact of maternal pre-pregnancy body mass index (BMI),...
Loading next page...
 
/lp/taylor-francis/using-time-varying-quantile-regression-approaches-to-model-the-ldcjQbXQDG
Publisher
Taylor & Francis
Copyright
© 2017 International Biometric Society – Chinese Region
ISSN
2470-9379
eISSN
2470-9360
DOI
10.1080/24709360.2017.1358137
Publisher site
See Article on Publisher Site

Abstract

For many applications, it is valuable to assess whether the effects of exposures over time vary by quantiles of the outcome. We have previously shown that quantile methods complement the traditional mean-based analyses, and are useful for studies of body size. Here, we extended previous work to time-varying quantile associations. Using data from over 18,000 children in the U.S. Collaborative Perinatal Project, we investigated the impact of maternal pre-pregnancy body mass index (BMI), maternal pregnancy weight gain, placental weight, and birth weight on childhood body size measured 4 times between 3 months and 7 years, using both parametric and non-parametric time-varying quantile regressions. Using our proposed model assessment tool, we found that non-parametric models fit the childhood growth data better than the parametric approaches. We also observed that quantile analysis resulted in difference inferences than the conditional mean models in three of the four constructs (maternal per-pregancy BMI, maternal weight gain, and placental weight). Overall, these results suggest the utility of applying time-varying quantile models for longitudinal outcome data. They also suggest that in the studies of body size, merely modelling the conditional mean may lead to incomplete summary of the data.

Journal

Biostatistics & EpidemiologyTaylor & Francis

Published: Jan 1, 2017

Keywords: Quantile regression; time-varying coefficient model; longitudinal methods; childhood growth

References