Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Robust product development for multiple quality characteristics using computer experiments and an optimization technique

Robust product development for multiple quality characteristics using computer experiments and an... Conventional parameter or tolerance designs focus on developing exact methods to minimize quality loss or manufacturing cost. The inherent assumption is that the response functions which represent the link between controllable variables and response values of quality characteristics are known before a design is developed. Moreover, parameter and tolerance values are assumed to be independent controllable variables in previous works; namely, they are determined separately in design activities. Currently, advanced computer software, such as computer-aided engineering, can help engineers to handle design problems with unknown response functions, at the stage of product design and process planning. Therefore, in this study, the software ANSYS was employed to obtain simulation data which represent the response values of quality characteristics. These response values will be used to fit a set of response functions for later analysis. However, previous works in computer simulation for design and planning usually lack consideration of the noise impact from an external design system. To approximate a realistic design environment, various levels of controllable variables, in conjunction with artificial noises created from uncontrollable variables, are used to generate simulated data for statistical analysis via Response Surface Methodology (RSM). Then, an optimization technique, such as mathematical programming, is adopted to integrate these response functions into one formulation so that optimal parameter and tolerance values are concurrently determined, with multiple quality characteristics taken into consideration. A bike-frame design was used to demonstrate the presented approach, followed by multiple quality characteristics of interest: material cost, bike-frame weight, structure reliability, and rigidity dependability. The goal is to minimize material cost and bike frame weight and to maximize structure reliability and rigidity dependability. This approach is useful for solving any complex design problems in the early stages, while providing enhanced functionality, quality, economic benefits, and a shorter design cycle. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Production Research Taylor & Francis

Robust product development for multiple quality characteristics using computer experiments and an optimization technique

25 pages

Loading next page...
 
/lp/taylor-francis/robust-product-development-for-multiple-quality-characteristics-using-qrMYk0R1Lv

References (17)

Publisher
Taylor & Francis
Copyright
Copyright Taylor & Francis Group, LLC
ISSN
1366-588X
eISSN
0020-7543
DOI
10.1080/00207540601139963
Publisher site
See Article on Publisher Site

Abstract

Conventional parameter or tolerance designs focus on developing exact methods to minimize quality loss or manufacturing cost. The inherent assumption is that the response functions which represent the link between controllable variables and response values of quality characteristics are known before a design is developed. Moreover, parameter and tolerance values are assumed to be independent controllable variables in previous works; namely, they are determined separately in design activities. Currently, advanced computer software, such as computer-aided engineering, can help engineers to handle design problems with unknown response functions, at the stage of product design and process planning. Therefore, in this study, the software ANSYS was employed to obtain simulation data which represent the response values of quality characteristics. These response values will be used to fit a set of response functions for later analysis. However, previous works in computer simulation for design and planning usually lack consideration of the noise impact from an external design system. To approximate a realistic design environment, various levels of controllable variables, in conjunction with artificial noises created from uncontrollable variables, are used to generate simulated data for statistical analysis via Response Surface Methodology (RSM). Then, an optimization technique, such as mathematical programming, is adopted to integrate these response functions into one formulation so that optimal parameter and tolerance values are concurrently determined, with multiple quality characteristics taken into consideration. A bike-frame design was used to demonstrate the presented approach, followed by multiple quality characteristics of interest: material cost, bike-frame weight, structure reliability, and rigidity dependability. The goal is to minimize material cost and bike frame weight and to maximize structure reliability and rigidity dependability. This approach is useful for solving any complex design problems in the early stages, while providing enhanced functionality, quality, economic benefits, and a shorter design cycle.

Journal

International Journal of Production ResearchTaylor & Francis

Published: Jun 15, 2008

Keywords: Parameter; Tolerance; Multiple quality characteristics; Computer experiment; Optimization; ANSYS

There are no references for this article.