Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
We generalise an interval-related interpolation theorem about abstract-time Interval Temporal Logic (ITL, [MOS 85, DUT 95]), which was first obtained in [GUE 01]. The generalisation is based on the abstract-time variant of a projection operator in the Duration Calculus (DC, [ZHO 91, HAN 97, ZHO 04]), which was introduced in [DAN 99] and later studied extensively in [GUE 02]. We propose a way to understand interpolation in the context of formal verification. We give an example showing that, unlike abstract-time ITL, DC does not have the Craig interpolation property in general, and establish a special form of Craig interpolation for abstract-time DC. Explicit definability after Beth is known to be strongly related to Craig interpolation in general. We show a limitation of a different kind to the scope of Beth definability in ITL by a counterexample too. We call the generalisation of interval-related interpolation that we present projection-related interpolation. The DC-specific restrictions apply to it too. We show that both Craig and projection-related interpolation hold about the ⌈P⌉-subset of DC without such restrictions. Our proofs of these theorems for the ⌈P⌉-subset entail algorithms for the construction of the interpolants.
Journal of Applied Non-Classical Logics – Taylor & Francis
Published: Jan 1, 2004
Keywords: duration calculus; projection; Craig interpolation
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.