Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Concordance measures and time-dependent ROC methods

Concordance measures and time-dependent ROC methods The receiver operating characteristic (ROC) curve displays sensitivity versus 1-specificity over a set of thresholds. The area under the ROC curve (AUC) is a global scalar summary of this curve. In the context of time-dependent ROC methods, we are interested in global scalar measures that summarize sequences of time-dependent AUCs over time. The concordance probability is a candidate for such purposes. The concordance probability can provide a global assessment of the discrimination ability of a test for an event that occurs at random times and may be right censored. If the test adequately differentiates between subjects who survive longer times and those who survive shorter times, this will assist clinical decisions. In this context, the concordance probability may support the assessment of precision medicine tools based on prognostic biomarkers models for overall survival. Definitions of time-dependent sensitivity and specificity are reviewed. Some connections between such definitions and concordance measures are also reviewed and we establish new connections via new measures of global concordance. We explore the relationship between such measures and their corresponding time-dependent AUC. To illustrate these concepts, an application in the context of Alzheimer's disease is presented. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biostatistics & Epidemiology Taylor & Francis

Concordance measures and time-dependent ROC methods

Concordance measures and time-dependent ROC methods

Abstract

The receiver operating characteristic (ROC) curve displays sensitivity versus 1-specificity over a set of thresholds. The area under the ROC curve (AUC) is a global scalar summary of this curve. In the context of time-dependent ROC methods, we are interested in global scalar measures that summarize sequences of time-dependent AUCs over time. The concordance probability is a candidate for such purposes. The concordance probability can provide a global assessment of the discrimination ability...
Loading next page...
 
/lp/taylor-francis/concordance-measures-and-time-dependent-roc-methods-YKS92se6vQ
Publisher
Taylor & Francis
Copyright
© 2021 International Biometric Society – Chinese Region
ISSN
2470-9379
eISSN
2470-9360
DOI
10.1080/24709360.2021.1926189
Publisher site
See Article on Publisher Site

Abstract

The receiver operating characteristic (ROC) curve displays sensitivity versus 1-specificity over a set of thresholds. The area under the ROC curve (AUC) is a global scalar summary of this curve. In the context of time-dependent ROC methods, we are interested in global scalar measures that summarize sequences of time-dependent AUCs over time. The concordance probability is a candidate for such purposes. The concordance probability can provide a global assessment of the discrimination ability of a test for an event that occurs at random times and may be right censored. If the test adequately differentiates between subjects who survive longer times and those who survive shorter times, this will assist clinical decisions. In this context, the concordance probability may support the assessment of precision medicine tools based on prognostic biomarkers models for overall survival. Definitions of time-dependent sensitivity and specificity are reviewed. Some connections between such definitions and concordance measures are also reviewed and we establish new connections via new measures of global concordance. We explore the relationship between such measures and their corresponding time-dependent AUC. To illustrate these concepts, an application in the context of Alzheimer's disease is presented.

Journal

Biostatistics & EpidemiologyTaylor & Francis

Published: Jul 3, 2021

Keywords: Time-dependent sensitivity and specificity; diagnostic test; censored survival times; inverse probability weighting; Alzheimer's disease

References