A comparative study of design-based and analysis-based approaches to causal inference with observational data
Abstract
Causal inference with observational data is a central goal in many fields. Propensity score methods are design-based approaches that try to ensure covariate balance without using information from the outcome variables. Analysis-based approaches, such as the Bayesian Additive Regression Tree and the Causal Forest, bypass the issue of covariate balance, and directly model the outcomes. We use a Monte Carlo simulation to study the performance of these two types of approaches. Some of the...