Zucchini yellow mosaic virus: biological properties, detection procedures and comparison of coat protein gene sequences

Zucchini yellow mosaic virus: biological properties, detection procedures and comparison of coat... Between 2006 and 2010, 5324 samples from at least 34 weed, two cultivated legume and 11 native species were collected from three cucurbit-growing areas in tropical or subtropical Western Australia. Two new alternative hosts of zucchini yellow mosaic virus (ZYMV) were identified, the Australian native cucurbit Cucumis maderaspatanus, and the naturalised legume species Rhyncosia minima . Low-level (0.7%) seed transmission of ZYMV was found in seedlings grown from seed collected from zucchini ( Cucurbita pepo ) fruit infected with isolate Cvn-1. Seed transmission was absent in >9500 pumpkin ( C. maxima and C. moschata ) seedlings from fruit infected with isolate Knx-1. Leaf samples from symptomatic cucurbit plants collected from fields in five cucurbit-growing areas in four Australian states were tested for the presence of ZYMV. When 42 complete coat protein (CP) nucleotide (nt) sequences from the new ZYMV isolates obtained were compared to those of 101 complete CP nt sequences from five other continents, phylogenetic analysis of the 143 ZYMV sequences revealed three distinct groups (A, B and C), with four subgroups in A (I-IV) and two in B (I-II). The new Australian sequences grouped according to collection location, fitting within A-I, A-II and B-II. The 16 new sequences from one isolated location in tropical northern Western Australia all grouped into subgroup B-II, which contained no other isolates. In contrast, the three sequences from the Northern Territory fitted into A-II with 94.6-99.0% nt identities with isolates from the United States, Iran, China and Japan. The 23 new sequences from the central west coast and two east coast locations all fitted into A-I, with 95.9-98.9% nt identities to sequences from Europe and Japan. These findings suggest that (i) there have been at least three separate ZYMV introductions into Australia and (ii) there are few changes to local isolate CP sequences following their establishment in remote growing areas. Isolates from A-I and B-II induced chlorotic symptoms in inoculated leaves of Chenopodium quinoa , but an isolate from A-II caused symptomless infection. One of three commercial ZYMV-specific antibodies did not detect all Australian isolates reliably by ELISA. A multiplex real-time PCR using dual-labelled probes was developed, which distinguished between Australian ZYMV isolates belonging to phylogenetic groups A-I, A-II and B-II. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Zucchini yellow mosaic virus: biological properties, detection procedures and comparison of coat protein gene sequences

Loading next page...
 
/lp/springer_journal/zucchini-yellow-mosaic-virus-biological-properties-detection-wiha2ZS4a6
Publisher
Springer Vienna
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Biomedicine; Virology; Infectious Diseases; Medical Microbiology
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-011-1102-0
Publisher site
See Article on Publisher Site

Abstract

Between 2006 and 2010, 5324 samples from at least 34 weed, two cultivated legume and 11 native species were collected from three cucurbit-growing areas in tropical or subtropical Western Australia. Two new alternative hosts of zucchini yellow mosaic virus (ZYMV) were identified, the Australian native cucurbit Cucumis maderaspatanus, and the naturalised legume species Rhyncosia minima . Low-level (0.7%) seed transmission of ZYMV was found in seedlings grown from seed collected from zucchini ( Cucurbita pepo ) fruit infected with isolate Cvn-1. Seed transmission was absent in >9500 pumpkin ( C. maxima and C. moschata ) seedlings from fruit infected with isolate Knx-1. Leaf samples from symptomatic cucurbit plants collected from fields in five cucurbit-growing areas in four Australian states were tested for the presence of ZYMV. When 42 complete coat protein (CP) nucleotide (nt) sequences from the new ZYMV isolates obtained were compared to those of 101 complete CP nt sequences from five other continents, phylogenetic analysis of the 143 ZYMV sequences revealed three distinct groups (A, B and C), with four subgroups in A (I-IV) and two in B (I-II). The new Australian sequences grouped according to collection location, fitting within A-I, A-II and B-II. The 16 new sequences from one isolated location in tropical northern Western Australia all grouped into subgroup B-II, which contained no other isolates. In contrast, the three sequences from the Northern Territory fitted into A-II with 94.6-99.0% nt identities with isolates from the United States, Iran, China and Japan. The 23 new sequences from the central west coast and two east coast locations all fitted into A-I, with 95.9-98.9% nt identities to sequences from Europe and Japan. These findings suggest that (i) there have been at least three separate ZYMV introductions into Australia and (ii) there are few changes to local isolate CP sequences following their establishment in remote growing areas. Isolates from A-I and B-II induced chlorotic symptoms in inoculated leaves of Chenopodium quinoa , but an isolate from A-II caused symptomless infection. One of three commercial ZYMV-specific antibodies did not detect all Australian isolates reliably by ELISA. A multiplex real-time PCR using dual-labelled probes was developed, which distinguished between Australian ZYMV isolates belonging to phylogenetic groups A-I, A-II and B-II.

Journal

Archives of VirologySpringer Journals

Published: Dec 1, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Access to DeepDyve database
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off