zrp2: a novel maize gene whose mRNA accumulates in the root cortex and mature stems

zrp2: a novel maize gene whose mRNA accumulates in the root cortex and mature stems A near full-length cDNA clone (pZRP2) was isolated from a cDNA library constructed from maize root mRNAs. The predicted polypeptide has a calculated molecular mass of 66 975 Da, is largely hydrophilic, and contains 26 repeats of a motif the consensus sequence of which is RKATTSYG[S][D/E][D/E][D/E][D/E][P]. The function of the putative protein remains to be elucidated. The ZRP2 mRNA accumulates to the highest levels in young roots, and is also present in mature roots and stems of maize. Further analysis of young roots indicates that the lowest level of ZRP2 mRNA is near the root tip, with relatively high levels throughout the remainder of the root. In situ hybridization reveals that ZRP2 mRNA accumulates predominantely in the cortical parenchyma cells of the root. In vitro nuclear run-on transcription experiments indicate a dramatically higher level of zrp2 gene transcription in 3-day old roots than in 5-day old leaves. A zrp2 genomic clone, which includes the transcribed region and 4.7 kb of upstream sequence, was isolated and characterized. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

zrp2: a novel maize gene whose mRNA accumulates in the root cortex and mature stems

Loading next page...
 
/lp/springer_journal/zrp2-a-novel-maize-gene-whose-mrna-accumulates-in-the-root-cortex-and-qmcpQELqyT
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005830313272
Publisher site
See Article on Publisher Site

Abstract

A near full-length cDNA clone (pZRP2) was isolated from a cDNA library constructed from maize root mRNAs. The predicted polypeptide has a calculated molecular mass of 66 975 Da, is largely hydrophilic, and contains 26 repeats of a motif the consensus sequence of which is RKATTSYG[S][D/E][D/E][D/E][D/E][P]. The function of the putative protein remains to be elucidated. The ZRP2 mRNA accumulates to the highest levels in young roots, and is also present in mature roots and stems of maize. Further analysis of young roots indicates that the lowest level of ZRP2 mRNA is near the root tip, with relatively high levels throughout the remainder of the root. In situ hybridization reveals that ZRP2 mRNA accumulates predominantely in the cortical parenchyma cells of the root. In vitro nuclear run-on transcription experiments indicate a dramatically higher level of zrp2 gene transcription in 3-day old roots than in 5-day old leaves. A zrp2 genomic clone, which includes the transcribed region and 4.7 kb of upstream sequence, was isolated and characterized.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 30, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off