ZnS nanoparticles capped with watermelon rind extract and their potential application in dye degradation

ZnS nanoparticles capped with watermelon rind extract and their potential application in dye... We report fabrication of stable ZnS nanoparticles (NPs) using a green chemistry concept with watermelon rind extract as capping and stabilizing agent. The cubic structure of the NPs was evidenced by X-ray powder diffraction analysis and electron diffraction studies. Dynamic light scattering and high-resolution transmission electron microscopy studies revealed that the average size of the ZnS NPs was <12 nm. The bandgap of the ZnS nanocrystals was found to be 3.42 eV using ultraviolet–visible (UV–Vis) spectroscopy studies. The energy-dispersive X-ray spectrum of the fabricated ZnS NPs confirmed the elemental Zn and S signals without peaks from any impurities. The biomolecular capping of the ZnS NPs was analyzed using Fourier-transform infrared spectroscopy. An illustrative stabilization mechanism for the ZnS NPs is given using citrulline, a major phytochemical in watermelon rind extract. The obtained ZnS NPs showed good photocatalytic activity towards methylene blue dye degradation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

ZnS nanoparticles capped with watermelon rind extract and their potential application in dye degradation

Loading next page...
 
/lp/springer_journal/zns-nanoparticles-capped-with-watermelon-rind-extract-and-their-E85Y9NeV8p
Publisher
Springer Journals
Copyright
Copyright © 2016 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-016-2700-y
Publisher site
See Article on Publisher Site

Abstract

We report fabrication of stable ZnS nanoparticles (NPs) using a green chemistry concept with watermelon rind extract as capping and stabilizing agent. The cubic structure of the NPs was evidenced by X-ray powder diffraction analysis and electron diffraction studies. Dynamic light scattering and high-resolution transmission electron microscopy studies revealed that the average size of the ZnS NPs was <12 nm. The bandgap of the ZnS nanocrystals was found to be 3.42 eV using ultraviolet–visible (UV–Vis) spectroscopy studies. The energy-dispersive X-ray spectrum of the fabricated ZnS NPs confirmed the elemental Zn and S signals without peaks from any impurities. The biomolecular capping of the ZnS NPs was analyzed using Fourier-transform infrared spectroscopy. An illustrative stabilization mechanism for the ZnS NPs is given using citrulline, a major phytochemical in watermelon rind extract. The obtained ZnS NPs showed good photocatalytic activity towards methylene blue dye degradation.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Aug 23, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off