Zinc Dyshomeostasis in Cardiomyocytes after Acute Hypoxia/Reoxygenation

Zinc Dyshomeostasis in Cardiomyocytes after Acute Hypoxia/Reoxygenation Zinc dyshomeostasis may play a role in the pathogenesis of myocardial ischemia/reperfusion injury. The objective of this study was to investigate the expression profile of zinc regulated transporter like- and iron-regulated transporter-like proteins (ZIPs) and zinc transporter proteins (ZnTs) in cardiomyocytes and their modulation in response to hypoxia and reoxygenation. Adult rat ventricular myocytes (ARVMs) were subjected to 6 h of hypoxia, followed by 18 h of reoxygenation. Intracellular and extracellular zinc concentrations were determined using Fluozin-3 and Newport Green fluorescence, respectively. Expression of ZnTs 1, 2, 5, and 9 along with ZIPs 1, 2, 3, 6, 7, 9, 10, 11, 13, and 14 was detectable in the cardiomyocytes by real-time reverse transcriptase polymerase chain reaction. Hypoxia elicited accumulation of intracellular free zinc, but subsequent reoxygenation resulted in striking loss of intracellular free zinc and decreased the cardiomyocyte viability. Concomitantly, extracellular zinc levels dropped rapidly during hypoxia, but increased after reoxygenation. Immunoblotting analysis revealed that hypoxia increased the expression of ZnT1, but reoxygenation significantly increased the expression of ZnTs 2 and 5. Neither hypoxia nor reoxygenation altered the levels of ZnT9. Increased intracellular zinc at the end of hypoxia is related to enhanced expression of ZIPs, whereas decreased intracellular zinc during reoxygenation appears to be due to lowered expression of all ZIPs, in addition to elevated levels of ZnTs 2 and 5. These results thus suggest that there is impaired accumulation of intracellular zinc during reoxygenation, due to overexpression of specific ZnTs and downregulation of ZIP expression. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biological Trace Element Research Springer Journals

Zinc Dyshomeostasis in Cardiomyocytes after Acute Hypoxia/Reoxygenation

Loading next page...
 
/lp/springer_journal/zinc-dyshomeostasis-in-cardiomyocytes-after-acute-hypoxia-J2ZCtyp7Of
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Life Sciences; Biochemistry, general; Biotechnology; Nutrition; Oncology
ISSN
0163-4984
eISSN
1559-0720
D.O.I.
10.1007/s12011-017-0957-7
Publisher site
See Article on Publisher Site

Abstract

Zinc dyshomeostasis may play a role in the pathogenesis of myocardial ischemia/reperfusion injury. The objective of this study was to investigate the expression profile of zinc regulated transporter like- and iron-regulated transporter-like proteins (ZIPs) and zinc transporter proteins (ZnTs) in cardiomyocytes and their modulation in response to hypoxia and reoxygenation. Adult rat ventricular myocytes (ARVMs) were subjected to 6 h of hypoxia, followed by 18 h of reoxygenation. Intracellular and extracellular zinc concentrations were determined using Fluozin-3 and Newport Green fluorescence, respectively. Expression of ZnTs 1, 2, 5, and 9 along with ZIPs 1, 2, 3, 6, 7, 9, 10, 11, 13, and 14 was detectable in the cardiomyocytes by real-time reverse transcriptase polymerase chain reaction. Hypoxia elicited accumulation of intracellular free zinc, but subsequent reoxygenation resulted in striking loss of intracellular free zinc and decreased the cardiomyocyte viability. Concomitantly, extracellular zinc levels dropped rapidly during hypoxia, but increased after reoxygenation. Immunoblotting analysis revealed that hypoxia increased the expression of ZnT1, but reoxygenation significantly increased the expression of ZnTs 2 and 5. Neither hypoxia nor reoxygenation altered the levels of ZnT9. Increased intracellular zinc at the end of hypoxia is related to enhanced expression of ZIPs, whereas decreased intracellular zinc during reoxygenation appears to be due to lowered expression of all ZIPs, in addition to elevated levels of ZnTs 2 and 5. These results thus suggest that there is impaired accumulation of intracellular zinc during reoxygenation, due to overexpression of specific ZnTs and downregulation of ZIP expression.

Journal

Biological Trace Element ResearchSpringer Journals

Published: Feb 8, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off