Yang–Baxterizations, Universal Quantum Gates and Hamiltonians

Yang–Baxterizations, Universal Quantum Gates and Hamiltonians The unitary braiding operators describing topological entanglements can be viewed as universal quantum gates for quantum computation. With the help of the Brylinski’s theorem, the unitary solutions of the quantum Yang–Baxter equation can be also related to universal quantum gates. This paper derives the unitary solutions of the quantum Yang–Baxter equation via Yang–Baxterization from the solutions of the braid relation. We study Yang–Baxterizations of the non-standard and standard representations of the six-vertex model and the complete solutions of the non-vanishing eight-vertex model. We construct Hamiltonians responsible for the time-evolution of the unitary braiding operators which lead to the Schrödinger equations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Yang–Baxterizations, Universal Quantum Gates and Hamiltonians

Loading next page...
 
/lp/springer_journal/yang-baxterizations-universal-quantum-gates-and-hamiltonians-H1BhI0iWuo
Publisher
Kluwer Academic Publishers-Plenum Publishers
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-005-7655-7
Publisher site
See Article on Publisher Site

Abstract

The unitary braiding operators describing topological entanglements can be viewed as universal quantum gates for quantum computation. With the help of the Brylinski’s theorem, the unitary solutions of the quantum Yang–Baxter equation can be also related to universal quantum gates. This paper derives the unitary solutions of the quantum Yang–Baxter equation via Yang–Baxterization from the solutions of the braid relation. We study Yang–Baxterizations of the non-standard and standard representations of the six-vertex model and the complete solutions of the non-vanishing eight-vertex model. We construct Hamiltonians responsible for the time-evolution of the unitary braiding operators which lead to the Schrödinger equations.

Journal

Quantum Information ProcessingSpringer Journals

Published: Jun 17, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off