Wounding activates immediate early transcription of genes for ERFs in tobacco plants

Wounding activates immediate early transcription of genes for ERFs in tobacco plants We have previously demonstrated that cutting induces the rapid response of genes for ethylene-responsive transcription factors (ERFs) in leaf strips of tobacco, and that the induction was not interfered but enhanced in the presence of the protein synthesis inhibitor cycloheximide (CHX). In this study, we analyzed the expression of genes for ERFs in tobacco plants by injuring leaf tissues with a hemostat. The results verified that mechanical damage is a trigger for rapid and concurrent induction of both the local and the systemic expression of genes for ERFs in tobacco plants. Further studies on systemic response of ERF genes in response to different severity and position of the wound on a leaf suggested that a threshold value might exist for the magnitude of wound signal to induce systemic activation of these genes. Then, we examined expression of genes for ERFs by analysis in transgenic tobacco plants that harbored reporter genes in which the promoter of the gene for NsERF2, NsERF3 or NsERF4 was fused to a gene for β-glucuronidase. The results suggested that the local and systemic accumulation of ERF mRNAs after wounding was primarily mediated by the rapid activation of transcription of the respective genes. In addition, we found that cycloheximide triggered rapid activation of genes for ERFs which might be mediated via activation of transcription of the genes for ERFs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Wounding activates immediate early transcription of genes for ERFs in tobacco plants

Loading next page...
 
/lp/springer_journal/wounding-activates-immediate-early-transcription-of-genes-for-erfs-in-rAkmszJW71
Publisher
Springer Journals
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1015553232309
Publisher site
See Article on Publisher Site

Abstract

We have previously demonstrated that cutting induces the rapid response of genes for ethylene-responsive transcription factors (ERFs) in leaf strips of tobacco, and that the induction was not interfered but enhanced in the presence of the protein synthesis inhibitor cycloheximide (CHX). In this study, we analyzed the expression of genes for ERFs in tobacco plants by injuring leaf tissues with a hemostat. The results verified that mechanical damage is a trigger for rapid and concurrent induction of both the local and the systemic expression of genes for ERFs in tobacco plants. Further studies on systemic response of ERF genes in response to different severity and position of the wound on a leaf suggested that a threshold value might exist for the magnitude of wound signal to induce systemic activation of these genes. Then, we examined expression of genes for ERFs by analysis in transgenic tobacco plants that harbored reporter genes in which the promoter of the gene for NsERF2, NsERF3 or NsERF4 was fused to a gene for β-glucuronidase. The results suggested that the local and systemic accumulation of ERF mRNAs after wounding was primarily mediated by the rapid activation of transcription of the respective genes. In addition, we found that cycloheximide triggered rapid activation of genes for ERFs which might be mediated via activation of transcription of the genes for ERFs.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 13, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off