Witnessing the boundary between Markovian and non-Markovian quantum dynamics: a Green’s function approach

Witnessing the boundary between Markovian and non-Markovian quantum dynamics: a Green’s... This paper presents a Green’s function-based root locus method to investigate the boundary between Markovian and non-Markovian open quantum systems in the frequency domain. A Langevin equation for the boson-boson coupling system is derived, where we show that the structure of the Green’s function dominates the system dynamics. In addition, by increasing the coupling between the system and its environment, the system dynamics are driven from Markovian to non-Markovian dynamics, which results from the redistribution in the modes of the Green’s function in the frequency domain. Both a critical transition and a critical point condition under Lorentzian noise are graphically presented using a root locus method. Related results are verified using an example of a boson-boson coupling system. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Witnessing the boundary between Markovian and non-Markovian quantum dynamics: a Green’s function approach

Loading next page...
 
/lp/springer_journal/witnessing-the-boundary-between-markovian-and-non-markovian-quantum-5vHlXMn1zU
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-1000-6
Publisher site
See Article on Publisher Site

Abstract

This paper presents a Green’s function-based root locus method to investigate the boundary between Markovian and non-Markovian open quantum systems in the frequency domain. A Langevin equation for the boson-boson coupling system is derived, where we show that the structure of the Green’s function dominates the system dynamics. In addition, by increasing the coupling between the system and its environment, the system dynamics are driven from Markovian to non-Markovian dynamics, which results from the redistribution in the modes of the Green’s function in the frequency domain. Both a critical transition and a critical point condition under Lorentzian noise are graphically presented using a root locus method. Related results are verified using an example of a boson-boson coupling system.

Journal

Quantum Information ProcessingSpringer Journals

Published: Apr 24, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off