Wintertime characteristic of peroxyacetyl nitrate in the Chengyu district of southwestern China

Wintertime characteristic of peroxyacetyl nitrate in the Chengyu district of southwestern China Atmospheric concentrations of peroxyacetyl nitrate (PAN) were measured in Ziyang in December 2012 to provide basic knowledge of PAN in the Chengyu district and offer recommendations for air pollution management. The PAN pollution was relatively severe in Ziyang in winter, with the maximum and average PAN concentrations of 1.61 and 0.55 ppbv, respectively, and a typical single-peak diurnal trend in PAN and theoretical PAN lost by thermal decomposition (TPAN) were observed. PAN and O3 concentrations were correlated (R 2 = 0.52) and the ratios of daily maximum PAN to O3 ([PAN]/[O3] ratio) ranged from 0.013 to 0.108, with an average of 0.038. Both acetone and methyl ethyl ketone (MEK) were essential for producing the acetylperoxy radicals (PA) and subsequently PAN in Ziyang in winter, and PAN concentrations at the sampling site exhibited more sensitivity to volatile organic compound (VOC) concentrations than nitrogen oxide (NOx) levels. Therefore, management should focus on reducing VOCs emissions, in particular those that produce acetone and MEK through photolysis and oxidizing reactions. In addition, the influence of relative humidity (RH) on the heterogeneous reactions between PAN and PM2.5 in the atmospheric environment may have led to the strong correlation between observed PM2.5 and PAN in Ziyang in winter. Furthermore, a typical air pollution event was observed on 17–18 December 2012, which Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and PSCF simulations suggest that it was caused by the local formation and the regional transport of polluted air masses from Hanzhong, Nanchong, and Chengdu. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Wintertime characteristic of peroxyacetyl nitrate in the Chengyu district of southwestern China

Loading next page...
 
/lp/springer_journal/wintertime-characteristic-of-peroxyacetyl-nitrate-in-the-chengyu-9I5xsbUqj7
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2018 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-018-2412-5
Publisher site
See Article on Publisher Site

Abstract

Atmospheric concentrations of peroxyacetyl nitrate (PAN) were measured in Ziyang in December 2012 to provide basic knowledge of PAN in the Chengyu district and offer recommendations for air pollution management. The PAN pollution was relatively severe in Ziyang in winter, with the maximum and average PAN concentrations of 1.61 and 0.55 ppbv, respectively, and a typical single-peak diurnal trend in PAN and theoretical PAN lost by thermal decomposition (TPAN) were observed. PAN and O3 concentrations were correlated (R 2 = 0.52) and the ratios of daily maximum PAN to O3 ([PAN]/[O3] ratio) ranged from 0.013 to 0.108, with an average of 0.038. Both acetone and methyl ethyl ketone (MEK) were essential for producing the acetylperoxy radicals (PA) and subsequently PAN in Ziyang in winter, and PAN concentrations at the sampling site exhibited more sensitivity to volatile organic compound (VOC) concentrations than nitrogen oxide (NOx) levels. Therefore, management should focus on reducing VOCs emissions, in particular those that produce acetone and MEK through photolysis and oxidizing reactions. In addition, the influence of relative humidity (RH) on the heterogeneous reactions between PAN and PM2.5 in the atmospheric environment may have led to the strong correlation between observed PM2.5 and PAN in Ziyang in winter. Furthermore, a typical air pollution event was observed on 17–18 December 2012, which Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) and PSCF simulations suggest that it was caused by the local formation and the regional transport of polluted air masses from Hanzhong, Nanchong, and Chengdu.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Jun 2, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off