Wingtip vortex control via the use of a reverse half-delta wing

Wingtip vortex control via the use of a reverse half-delta wing The effect of a 65° sweep reverse half-delta wing (RHDW), mounted at the squared tip of a rectangular NACA 0012 wing, on the tip vortex was investigated experimentally at Re = 2.45 × 105. The RHDW was found to produce a weaker tip vortex with a lower vorticity level and, more importantly, a reduced lift-induced drag compared to the baseline wing. In addition to the lift increment, the RHDW also produced a large separated wake flow and subsequently an increased profile drag. The reduction in lift-induced drag, however, outperformed the increase in profile drag and resulted in a virtually unchanged total drag in comparison with the baseline wing. Physical mechanisms responsible for the RHDW-induced appealing aerodynamics and vortex flow modifications were discussed. Experiments in Fluids Springer Journals

Wingtip vortex control via the use of a reverse half-delta wing

Loading next page...
Copyright © 2012 by Springer-Verlag
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial