Wigner–Yanase skew information and entanglement generation in quantum measurement

Wigner–Yanase skew information and entanglement generation in quantum measurement The first step of quantum measurement procedure is known as premeasurement, during which correlation is established between the system and the measurement apparatus. Such correlation may be classical or nonclassical in nature. One compelling nonclassical correlation is entanglement, a useful resource for various quantum information theoretic protocols. Quantifying the amount of entanglement, generated during quantum measurement, therefore, seeks importance from practical ground, and this is the central issue of the present paper. Interestingly, for a two-level quantum system, we obtain that the amount of entanglement, measured in term of negativity, generated in premeasurement process can be quantified by two factors: skew information, which quantifies the uncertainty in the measurement of an observable not commuting with some conserved quantity of the system, and mixedness parameter of the system’s initial state. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Wigner–Yanase skew information and entanglement generation in quantum measurement

Loading next page...
 
/lp/springer_journal/wigner-yanase-skew-information-and-entanglement-generation-in-quantum-P2VItDU3hi
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-017-1546-6
Publisher site
See Article on Publisher Site

Abstract

The first step of quantum measurement procedure is known as premeasurement, during which correlation is established between the system and the measurement apparatus. Such correlation may be classical or nonclassical in nature. One compelling nonclassical correlation is entanglement, a useful resource for various quantum information theoretic protocols. Quantifying the amount of entanglement, generated during quantum measurement, therefore, seeks importance from practical ground, and this is the central issue of the present paper. Interestingly, for a two-level quantum system, we obtain that the amount of entanglement, measured in term of negativity, generated in premeasurement process can be quantified by two factors: skew information, which quantifies the uncertainty in the measurement of an observable not commuting with some conserved quantity of the system, and mixedness parameter of the system’s initial state.

Journal

Quantum Information ProcessingSpringer Journals

Published: Feb 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off