Wideband Millimeter-Wave Channel Characterization in an Open Office at 26GHz

Wideband Millimeter-Wave Channel Characterization in an Open Office at 26GHz Based on the newest frequency allocation for the fifth generation (5G) radio systems at 26 GHz millimeter wave band by the World Radio Communications Conference, this paper investigates the wideband channel properties by measurements carried out in the LOS and NLOS environments at 26 GHz with 1 GHz bandwidth in an open office at KeySight Beijing, China, which is a representative of an indoor hotspot scenario. In the time domain measurements, an omni-directional biconical horn is used at the transmitter, while at the receiver a 24.3 dBi horn is applied and rotated with 5° angular step in the whole azimuth plane, and from −20° to 30° in the elevation plane with 10° angular step. In the work, two kinds of path-loss models are developed, namely directional and omni-directional models by using close-in and float intercept methods. The directional path-loss model is useful for adopting beamforming techniques. The large scale channel parameters such as the shadow fading, root mean square (RMS) delay spread, RMS angular spread in the azimuth and elevation planes, Ricean K-factor, number of clusters and their correlations are investigated for the fifth generation (5G) link and system level simulations. A new method for extracting number of clusters is proposed to find the peak power within a sliding window. The power angular profiles are employed at the measurement locations for propagation mechanisms studies. We believe that the newest results in this work are useful in the simulations and planning for future 5G radio systems at 26 GHz. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wireless Personal Communications Springer Journals

Wideband Millimeter-Wave Channel Characterization in an Open Office at 26GHz

Loading next page...
 
/lp/springer_journal/wideband-millimeter-wave-channel-characterization-in-an-open-office-at-kDF5ENVsnB
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Communications Engineering, Networks; Signal,Image and Speech Processing; Computer Communication Networks
ISSN
0929-6212
eISSN
1572-834X
D.O.I.
10.1007/s11277-017-4765-3
Publisher site
See Article on Publisher Site

Abstract

Based on the newest frequency allocation for the fifth generation (5G) radio systems at 26 GHz millimeter wave band by the World Radio Communications Conference, this paper investigates the wideband channel properties by measurements carried out in the LOS and NLOS environments at 26 GHz with 1 GHz bandwidth in an open office at KeySight Beijing, China, which is a representative of an indoor hotspot scenario. In the time domain measurements, an omni-directional biconical horn is used at the transmitter, while at the receiver a 24.3 dBi horn is applied and rotated with 5° angular step in the whole azimuth plane, and from −20° to 30° in the elevation plane with 10° angular step. In the work, two kinds of path-loss models are developed, namely directional and omni-directional models by using close-in and float intercept methods. The directional path-loss model is useful for adopting beamforming techniques. The large scale channel parameters such as the shadow fading, root mean square (RMS) delay spread, RMS angular spread in the azimuth and elevation planes, Ricean K-factor, number of clusters and their correlations are investigated for the fifth generation (5G) link and system level simulations. A new method for extracting number of clusters is proposed to find the peak power within a sliding window. The power angular profiles are employed at the measurement locations for propagation mechanisms studies. We believe that the newest results in this work are useful in the simulations and planning for future 5G radio systems at 26 GHz.

Journal

Wireless Personal CommunicationsSpringer Journals

Published: Aug 11, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off