White matter microstructure of patients with neurofibromatosis type 1 and its relation to inhibitory control

White matter microstructure of patients with neurofibromatosis type 1 and its relation to... Neurofibromatosis Type 1 (NF1) is commonly associated with deficits in executive functions such as working memory and inhibitory control. A valid biomarker to describe the pathological basis of these deficits in NF1 is not available. The aim of this study was to investigate whether any abnormalities in white matter integrity of the executive function related anterior thalamic radiation (ATR), cingulate bundle (CB), and superior longitudinal fasciculus (SLF) may be regarded as a pathological basis for inhibitory control deficits in adolescents with NF1. Sixteen NF1 patients and 32 healthy controls underwent 3 T DTI MRI scanning. Whole brain-, ATR-, CB-, and SLF-white matter integrity were studied using fractional anisotropy, mean (MD), radial, and axial (DA) diffusivity. Correlation analyses between white matter metrics and inhibitory control (as measured with a computerized task) were performed. Also, verbal and performance abilities (IQ-estimates) were assessed and correlated with white matter metrics. Patients showed significant whole brain- and local microstructural pathology when compared to healthy controls in all measures. In NF1-patients, whole-brain (MD: r = .646 and DA: r = .673) and ATR- (r-range: −.405–.771), but not the CB- (r-range: −.307–.472) and SLF- (r-range: −.187–.406) white matter integrity, were correlated with inhibitory control. Verbal and performance abilities were not associated with white matter pathology. In NF1, white matter abnormalities are observed throughout the brain, but damage to the ATR seems specifically, or at least most strongly related to inhibitory control. Future studies should examine whether reduced white matter integrity in other brain regions or tracts is (more strongly) associated with different aspects of the cognitive-behavioral phenotype associated with NF1. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Imaging and Behavior Springer Journals

White matter microstructure of patients with neurofibromatosis type 1 and its relation to inhibitory control

Loading next page...
 
/lp/springer_journal/white-matter-microstructure-of-patients-with-neurofibromatosis-type-1-oCjPOoIOiO
Publisher
Springer Journals
Copyright
Copyright © 2016 by The Author(s)
Subject
Biomedicine; Neurosciences; Neuroradiology; Neuropsychology; Psychiatry
ISSN
1931-7557
eISSN
1931-7565
D.O.I.
10.1007/s11682-016-9641-3
Publisher site
See Article on Publisher Site

Abstract

Neurofibromatosis Type 1 (NF1) is commonly associated with deficits in executive functions such as working memory and inhibitory control. A valid biomarker to describe the pathological basis of these deficits in NF1 is not available. The aim of this study was to investigate whether any abnormalities in white matter integrity of the executive function related anterior thalamic radiation (ATR), cingulate bundle (CB), and superior longitudinal fasciculus (SLF) may be regarded as a pathological basis for inhibitory control deficits in adolescents with NF1. Sixteen NF1 patients and 32 healthy controls underwent 3 T DTI MRI scanning. Whole brain-, ATR-, CB-, and SLF-white matter integrity were studied using fractional anisotropy, mean (MD), radial, and axial (DA) diffusivity. Correlation analyses between white matter metrics and inhibitory control (as measured with a computerized task) were performed. Also, verbal and performance abilities (IQ-estimates) were assessed and correlated with white matter metrics. Patients showed significant whole brain- and local microstructural pathology when compared to healthy controls in all measures. In NF1-patients, whole-brain (MD: r = .646 and DA: r = .673) and ATR- (r-range: −.405–.771), but not the CB- (r-range: −.307–.472) and SLF- (r-range: −.187–.406) white matter integrity, were correlated with inhibitory control. Verbal and performance abilities were not associated with white matter pathology. In NF1, white matter abnormalities are observed throughout the brain, but damage to the ATR seems specifically, or at least most strongly related to inhibitory control. Future studies should examine whether reduced white matter integrity in other brain regions or tracts is (more strongly) associated with different aspects of the cognitive-behavioral phenotype associated with NF1.

Journal

Brain Imaging and BehaviorSpringer Journals

Published: Oct 29, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off