Whiskers amiss, a new vibrissae and hair mutation near the Krt1 cluster on mouse Chromosome 11

Whiskers amiss, a new vibrissae and hair mutation near the Krt1 cluster on mouse Chromosome 11 Whiskers amiss (wam) is a new spontaneous recessive mutation in the SELH/Bc strain of mice that causes a phenotype of askew, sometimes kinked or curled, breakable whiskers and disheveled-appearing body hair, apparently owing to disoriented guard hairs. Heterozygotes on three genetic backgrounds are indistinguishable from normal. Using informative SSLPs in the F2 generation after crosses to two normal strains, we have mapped wam to the region of the type I keratin cluster on Chromosome (Chr) 11, within an approximately 6-cM segment according to the current Mouse Genome Database (MGD) map position of flanking SSLPs. Although several other hair mutations also map to the Krt1 region (Re, Rim3, Bda, Bsk), none has a hair and whisker phenotype similar to that of wam, and, because all are transmitted as dominants, interpretable complementation tests could not be done. Scabbing and tissue loss occur on the rims of the pinnae and tail tip in some aging wam homozygotes, suggesting that wam may be an animal model of a genetic ectodermal disorder. The SELH/Bc strain background appears to have an unusually high rate of spontaneous mutation; wam is the sixth mutation to be described. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mammalian Genome Springer Journals

Whiskers amiss, a new vibrissae and hair mutation near the Krt1 cluster on mouse Chromosome 11

Loading next page...
 
/lp/springer_journal/whiskers-amiss-a-new-vibrissae-and-hair-mutation-near-the-krt1-cluster-l4I336vstB
Publisher
Springer Journals
Copyright
Copyright © 2000 by Springer-Verlag New York Inc.
Subject
Life Sciences; Cell Biology; Animal Genetics and Genomics; Human Genetics
ISSN
0938-8990
eISSN
1432-1777
D.O.I.
10.1007/s003350010050
Publisher site
See Article on Publisher Site

Abstract

Whiskers amiss (wam) is a new spontaneous recessive mutation in the SELH/Bc strain of mice that causes a phenotype of askew, sometimes kinked or curled, breakable whiskers and disheveled-appearing body hair, apparently owing to disoriented guard hairs. Heterozygotes on three genetic backgrounds are indistinguishable from normal. Using informative SSLPs in the F2 generation after crosses to two normal strains, we have mapped wam to the region of the type I keratin cluster on Chromosome (Chr) 11, within an approximately 6-cM segment according to the current Mouse Genome Database (MGD) map position of flanking SSLPs. Although several other hair mutations also map to the Krt1 region (Re, Rim3, Bda, Bsk), none has a hair and whisker phenotype similar to that of wam, and, because all are transmitted as dominants, interpretable complementation tests could not be done. Scabbing and tissue loss occur on the rims of the pinnae and tail tip in some aging wam homozygotes, suggesting that wam may be an animal model of a genetic ectodermal disorder. The SELH/Bc strain background appears to have an unusually high rate of spontaneous mutation; wam is the sixth mutation to be described.

Journal

Mammalian GenomeSpringer Journals

Published: Apr 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off