In this paper we show a striking contrast in the symmetries of equilibria and extremisers of the total elastic energy of a hyperelastic incompressible annulus subject to pure displacement boundary conditions. Indeed upon considering the equilibrium equations, here, the nonlinear second order elliptic system formulated for the deformation u = ( u 1 , … , u N ) $u=(u_{1}, \ldots, u_{N})$ : E L [ u , X ] = { Δ u = div ( P ( x ) cof ∇ u ) in X , det ∇ u = 1 in X , u ≡ φ on ∂ X , $$ {\mathbb{E}} {\mathbb{L}}[u, {\mathbf {X}}] = \left \{ \textstyle\begin{array}{l@{\quad}l} \Delta u = \operatorname{div}(\mathscr{P} (x) \operatorname{cof} \nabla u) & \textrm{in }{\mathbf {X}},\\ \det\nabla u = 1 & \textrm{in }{\mathbf {X}},\\ u \equiv\varphi& \textrm{on }\partial{\mathbf {X}}, \end{array}\displaystyle \right . $$ where X ${\mathbf {X}}$ is a finite, open, symmetric N $N$ -annulus (with N ≥ 2 $N \ge2$ ), P = P ( x ) $\mathscr{P}=\mathscr{P}(x)$ is an unknown hydrostatic pressure field and φ $\varphi$ is the identity mapping, we prove that, despite the inherent rotational symmetry in the system, when N = 3 $N=3$ , the problem possesses no non-trivial symmetric equilibria whereas in sharp contrast, when N = 2 $N=2$ , the problem possesses an infinite family of symmetric and topologically distinct equilibria. We extend and prove the counterparts of these results in higher dimensions by way of showing that a similar dichotomy persists between all odd vs. even dimensions N ≥ 4 $N \ge4$ and discuss a number of closely related issues.
Journal of Elasticity – Springer Journals
Published: May 29, 2018
It’s your single place to instantly
discover and read the research
that matters to you.
Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.
All for just $49/month
Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly
Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.
Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.
Read from thousands of the leading scholarly journals from SpringerNature, Wiley-Blackwell, Oxford University Press and more.
All the latest content is available, no embargo periods.
“Hi guys, I cannot tell you how much I love this resource. Incredible. I really believe you've hit the nail on the head with this site in regards to solving the research-purchase issue.”
Daniel C.
“Whoa! It’s like Spotify but for academic articles.”
@Phil_Robichaud
“I must say, @deepdyve is a fabulous solution to the independent researcher's problem of #access to #information.”
@deepthiw
“My last article couldn't be possible without the platform @deepdyve that makes journal papers cheaper.”
@JoseServera
DeepDyve Freelancer | DeepDyve Pro | |
---|---|---|
Price | FREE | $49/month |
Save searches from | ||
Create folders to | ||
Export folders, citations | ||
Read DeepDyve articles | Abstract access only | Unlimited access to over |
20 pages / month | ||
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.