Which verification qubits perform best for secure communication in noisy channel?

Which verification qubits perform best for secure communication in noisy channel? In secure quantum communication protocols, a set of single qubits prepared using 2 or more mutually unbiased bases or a set of n-qubit $$(n\ge 2)$$ ( n ≥ 2 ) entangled states of a particular form are usually used to form a verification string which is subsequently used to detect traces of eavesdropping. The qubits that form a verification string are referred to as decoy qubits, and there exists a large set of different quantum states that can be used as decoy qubits. In the absence of noise, any choice of decoy qubits provides equivalent security. In this paper, we examine such equivalence for noisy environment (e.g., in amplitude damping, phase damping, collective dephasing and collective rotation noise channels) by comparing the decoy-qubit-assisted schemes of secure quantum communication that use single-qubit states as decoy qubits with the schemes that use entangled states as decoy qubits. Our study reveals that the single- qubit-assisted scheme performs better in some noisy environments, while some entangled-qubit-assisted schemes perform better in other noisy environments. Specifically, single-qubit-assisted schemes perform better in amplitude damping and phase damping noisy channels, whereas a few Bell-state-based decoy schemes are found to perform better in the presence of the collective noise. Thus, if the kind of noise present in a communication channel (i.e., the characteristics of the channel) is known or measured, then the present study can provide the best choice of decoy qubits required for implementation of schemes of secure quantum communication through that channel. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Which verification qubits perform best for secure communication in noisy channel?

Loading next page...
 
/lp/springer_journal/which-verification-qubits-perform-best-for-secure-communication-in-9FhHN0gt0T
Publisher
Springer US
Copyright
Copyright © 2015 by Springer Science+Business Media New York
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
D.O.I.
10.1007/s11128-015-1207-6
Publisher site
See Article on Publisher Site

Abstract

In secure quantum communication protocols, a set of single qubits prepared using 2 or more mutually unbiased bases or a set of n-qubit $$(n\ge 2)$$ ( n ≥ 2 ) entangled states of a particular form are usually used to form a verification string which is subsequently used to detect traces of eavesdropping. The qubits that form a verification string are referred to as decoy qubits, and there exists a large set of different quantum states that can be used as decoy qubits. In the absence of noise, any choice of decoy qubits provides equivalent security. In this paper, we examine such equivalence for noisy environment (e.g., in amplitude damping, phase damping, collective dephasing and collective rotation noise channels) by comparing the decoy-qubit-assisted schemes of secure quantum communication that use single-qubit states as decoy qubits with the schemes that use entangled states as decoy qubits. Our study reveals that the single- qubit-assisted scheme performs better in some noisy environments, while some entangled-qubit-assisted schemes perform better in other noisy environments. Specifically, single-qubit-assisted schemes perform better in amplitude damping and phase damping noisy channels, whereas a few Bell-state-based decoy schemes are found to perform better in the presence of the collective noise. Thus, if the kind of noise present in a communication channel (i.e., the characteristics of the channel) is known or measured, then the present study can provide the best choice of decoy qubits required for implementation of schemes of secure quantum communication through that channel.

Journal

Quantum Information ProcessingSpringer Journals

Published: Dec 19, 2015

References

  • Quantum dense key distribution
    Degiovanni, IP; Berchera, IR; Castelletto, S; Rastello, ML; Bovino, FA; Colla, AM; Castagnoli, G
  • A scheme for secure direct communication using EPR pairs and teleportation
    Yan, FL; Zhang, XQ
  • Two-step orthogonal-state-based protocol of quantum secure direct communication with the help of order-rearrangement technique
    Yadav, P; Srikanth, R; Pathak, A

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off