WhiB4 Regulates the PE/PPE Gene Family and is Essential for Virulence of Mycobacterium marinum

WhiB4 Regulates the PE/PPE Gene Family and is Essential for Virulence of Mycobacterium marinum www.nature.com/scientificreports OPEN WhiB4 Regulates the PE/PPE Gene Family and is Essential for Virulence of Mycobacterium marinum Received: 15 December 2016 1 1 1 1 1 1,2,3 1,4 Jing Wu , Huan-wei Ru , Zhi-hao Xiang , Jun Jiang , Yu-chen Wang , Lu Zhang & Jun Liu Accepted: 18 April 2017 During the course of infection, pathogenic mycobacteria including Mycobacterium tuberculosis (M. Published: xx xx xxxx tb) encounter host environments of variable oxygen tension, ranging from the hypoxic center of granulomas to the most oxygenated region in the lung cavities. Mycobacterial responses to changes of oxygen tension are critically related to infection outcomes, such as latency and reactivation. WhiB4 is an iron-sulfur containing transcription factor that is highly sensitive to oxygen exposure. In this study, we found that WhiB4 of Mycobacterium marinum (M. marinum), a pathogenic mycobacterial species that is closely related to M. tb, is required for its virulence. M. marinum ΔwhiB4 exhibited defective intracellular replication in macrophages and diminished virulence in zebrafish. Histology analysis revealed that the host had successfully controlled ΔwhiB4 bacteria, forming well-organized granulomas. RNA-seq analysis identified a large number of pe/ppe genes that were regulated by WhiB4, which provides an explanation for the essential role of WhiB4 in M. marinum virulence. Several antioxidant enzymes were also upregulated in ΔwhiB4, supporting its role in modulation of oxidative stress response. Taken together, we have provided new insight into and proposed a model to explain the physiological role of WhiB4. Tuberculosis, caused by Mycobacterium tuberculosis (M. tb), continues to be a major global health problem, caus- ing 1.5 million deaths and 9.6 million new infections in 2014. In the majority of individuals infected with M. 1, 2 tb, the bacteria establish a latent, asymptomatic infection that can persist for decades . About 5–10% of these individuals will develop active disease in their lifetime and the risk of reactivation is markedly increased by host immunosuppression . About one-third of the world’s population is latently infected, representing a large reservoir for reactivation . Understanding the genetic programs that facilitate the entry of M. tb into and emergence from latency will facilitate the development of novel therapeutic strategies. During the course of infection, M. tb must encounter heterogeneous host environments, including the high oxygen tension in the lung alveolus , the reactive oxygen and nitrogen species generated in activated mac- 6 7, 8 rophages , as well as the nutrient depleted and hypoxic center of tuberculous granulomas . How M. tb survives these diverse environments is not fully understood. Of particular interest is the response of M. tb to changes of oxygen tension. Studies from human and animals suggest an intimate link between oxygen tension and the 9–14 9, 15 outcome of M. tb infection . As such, hypoxia is considered a major stimulus that triggers M. tb latency 15–17 and is one of the most frequently used in vitro conditions to mimic the environment of human granulomas . Accordingly, sets of M. tb genes that respond to hypoxia have been identified, such as the extensively studied 18–21 heme-based DosR/S/T regulon . Little is known about the reactivation of M. tb from the persistent state, and presumably access to oxygen is an important requirement. Consistent with this notion, reactivation of latent TB in humans occurs most frequently in the upper lobes of the lung, the most oxygenated region of the body . In the later stage of active pulmonary TB, lung cavities that connect to airways provide oxygen-rich environments, allowing M. tb to reach high density and subsequent spread . Therefore, knowledge on the response of M . tb to oxygen exposure is critically important for understanding the pathogenesis of M. tb. State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China. Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Fudan University, Shanghai, China. Shanghai Engineering Research Center Of Industrial Microorganisms, Shanghai, China. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. Correspondence and requests for materials should be addressed to L.Z. (email: zhanglu407@fudan.edu.cn) or J.L. (email: jun.liu@utoronto.ca) Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 1 www.nature.com/scientificreports/ Figure 1. M. marinum ΔwhiB4 exhibited altered colony morphology and was defective in cording formation. (A) M. marinum ΔwhiB4 exhibited dry and rough colony morphology on 7H11 agar, as compared to as compared to the smoother, glossier, morphology of WT or the complemented strain. (B) Cells of WT or the complemented strain formed the serpentine cords, which were not observed for ΔwhiB4. Several recent studies demonstrate that mycobacterial WhiB4 is an oxygen-sensitive transcription factor. WhiB4 is a member of the WhiB superfamily transcription factors that are conserved in actinomycetes, includ- 23–28 ing many mycobacterial species such as M. tb and M. marinum . WhiB4 contains the highly conserved 29, 30 Cys-X14-22-Cys-X2-Cys-X5-Cys motif, which forms a [4Fe-4S] cluster in the holoenzyme . Upon exposure to O , WhiB4 rapidly (within minutes) loses the [4Fe-4S] cluster and leads to an oxidized apo-WhiB4 contain- ing disulfide bonds. Importantly, the oxidized form of WhiB4 has the strongest DNA binding activity . The response of WhiB4 to oxygen exposure occurred much more rapidly than other WhiB proteins (e.g., WhiB1 and 30–32 WhiB3), making it an oxygen sensor . The ability to rapidly respond to oxygen exposure and activate DNA binding activity implies an active role of WhiB4 in mycobacterial virulence. However, deletion of whiB4 from M. tb resulted in hypervirulence in the lungs of guinea pigs, which was attributed to the increased expression of antioxidant enzymes including alkyl hydroperoxide reductases AhpC and AhpD in this strain . Therefore, WhiB4 in M. tb is primarily involved in modulation of oxidative stress response and is apparently not required for virulence. In this study, we found that WhiB4 plays a different role in M . marinum. Unlike in M. tb, inactivation of whiB4 in M. marinum led to loss of virulence in zebras fi h, a natural host of M . marinum, and impaired replication in macrophages. RNA-seq data revealed that WhiB4 positively regulates a large number of pe/ppe gene family in M. marinum, providing an explanation for the essential role of WhiB4 in M. marinum virulence. Our study pro- vides new insight into the biological function of WhiB4 and also indicates a different role for WhiB4 in different pathogenic mycobacteria. Results M. marinum ΔwhiB4 is defective in cording formation. We have isolated a transposon inactivated whiB4 mutant strain of M. marinum, which was identified in a screen of mutation library for altered colony morphology. The transposon was inserted at a TA site in the promoter region of whiB4, 28 bp upstream of the start codon. Since the transposon inactivated transcription of whiB4, we referred this strain ΔwhiB4. The mutant displayed aberrant crustose colony morphology as compared to the smoother, glossier morphology of the WT strain (Fig. 1A). Previously, we showed that changes of colony morphology of M. marinum are oe ft n associated with defective biosynthesis of lipooligosaccharides (LOSs) in the cell wall . Consistently, a recent study found that deletion of whiB4 from M. marinum E11 strain resulted in rough colony morphology and diminished levels of LOSs . Importantly, we found that M. marinum ΔwhiB4 is defective in cording formation (Fig. 1B), a phenotype not previously described. When grown in liquid media, the WT strain formed serpentine cords that are characteristic of pathogenic mycobacteria, including M. marinum. This phenotype was abolished in Δ whiB4. Complementation of ΔwhiB4 with a plasmid pNBV1 containing intact whiB4 gene restored both the colony morphology and cord- ing formation, indicating that inactivation of whiB4 gene is responsible for these phenotypes. M. marinum ΔwhiB4 is defective in intracellular replication. Cording morphology was first 35–37 described by Robert Koch, and previous studies have revealed a correlation between cording and virulence . The defective cording phenotype of the Δ whiB4 strain prompted us to examine if inactivation of whiB4 affects Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 2 www.nature.com/scientificreports/ Figure 2. M. marinum ΔwhiB4 exhibited reduced intracellular survival. RAW macrophage cells were infected with M. marinum strains and the intracellular survival of each strain was determined by determining bacterial CFU at indicated time points post infection. Data are plotted as mean ± SEM (n = 3), and are representative of two independent experiments. The CFU of ΔwhiB4 at day 4 and 5 were significantly lower than that of WT (*p < 0.05; **p < 0.01), or the complemented strain (p < 0.001) as analyzed by two-way ANOVA. Figure 3. M. marinum ΔwhiB4 was attenuated in zebras fi h. (A) Zebras fi h (15 per group) were infected with indicated strain at 10 CFU bacteria per fish, and were monitored for mortalities over a 40-day period. The survival curves were plotted using the Kaplan-Meier method and differences between curves were analyzed using the log-rank test. All fish infected with ΔwhiB4 or PBS survived. The survival curve of the ΔwhiB4 group was significantly different to those of WT (p = 0.0005) or the complemented strain (p < 0.0001). A similar result was found in another independent experiment (B). virulence of M. marinum. We first performed macrophage infection experiments to determine the intracellular growth of ΔwhiB4. RAW macrophages were infected with WT, ΔwhiB4, or the complemented strain of M. mari- num and the intracellular growth of bacteria were assayed by enumerating the bacterial number (colony forming unit, CFU) at different time points post-infection. Both WT and the complemented strain grew substantially inside macrophages. By contrast, the growth of ΔwhiB4 inside macrophages was significantly reduced (Fig.  2). All three strains exhibited equivalent growth in 7H9 media. Taken together, these data suggest that whiB4 is required for the intracellular replication of M. marinum. M. marinum ΔwhiB4 is attenuated in zebrafish. Zebras fi h are a natural host of M. marinum and have been widely used as a laboratory model for studying M. marinum infection, which manifests both acute dissem- inated disease and chronic persistent infection . To assess the role of whiB4 in virulence, adult zebrafish (15 per group) were infected with WT, ΔwhiB4, or the complemented strain of M. marinum, and were monitored for survival. The median survival time of fish infected with WT and the complemented strain was 18- and 17- days, respectively (Fig. 3A). By contrast, all zebras fi h infected with ΔwhiB4 survived during the 40-day course of experiments. Log-rank analysis indicated that the survival curve of the fish group infected with ΔwhiB4 was sig- nificantly die ff rent to the groups of fish infected with WT ( p = 0.0005) or the complemented strain (p < 0.0001). e Th re was no significant die ff rence between the survival curves of fish infected with WT and the complemented strain (p = 0.08). Fish infected with ΔwhiB4 also exhibited significantly less severe pathology than those infected with WT or the complemented strain. At week 3 post infection, fish infected with WT or the complemented strain exhib- ited severe tissue damage in multiple organs, including livers, kidneys and intestines. Numerous bacteria were detected in these organs. As an example, fish liver infected with WT M. marinum is shown (Fig. 4A,B). The bac- teria had spread extensively and there were no organized granulomas observed at this stage of infection. By con- trast, there was no discernible pathology in livers or other organs of fish infected with Δ whiB4 at the same period (week 3 post infection) (Fig. 4C). A few granulomas were detected in the livers of fish infected with Δ whiB4 at week 4 post infection (Fig. 4D,E). The granulomas were well organized with bacteria contained inside (Fig.  4F), indicating a successful control of bacterial spread by the host. Taken together, these results demonstrated that inactivation of whiB4 in M. marinum greatly reduced its virulence in zebras fi h. Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 3 www.nature.com/scientificreports/ Figure 4. M. marinum ΔwhiB4 caused less severe pathology. Histological analysis of fish tissues from the experiment described in Fig. 3A. (A,B) Liver sections of fish infected with WT M. marinum at 3 weeks post- challenge. Samples were analyzed with hematoxylin and eosin (H&E) staining (A) and Ziehl-Neelsen method of acid fast staining (B). Both are 20× magnification. (C) H&E staining of liver sections of fish infected with ΔwhiB4 at 3 weeks post-infection (4× magnification). (D,E) Liver sections of fish infected with ΔwhiB4 at 3 weeks post-infection (10× magnification) and stained with H&E (D) or Ziehl-Neelsen (E). The well-organized granuloma observed in (E, white star) was zoomed in for better visualization (F), 40× magnification. A similar result was found in another independent experiment (Fig. 3B). The median survival time of fish infected with WT or the complemented strains was both 28 days, whereas 13 out of 14 fish infected with ΔwhiB4 survived. Consistently, there was a significant difference between the survival curve of Δ whiB4 infected group and groups infected with WT (p = 0.007, log-rank analysis) or the complemented strain (p = 0.003). There is no significant difference between the survival curves of fish infected with WT and the complemented strain (p = 0.98). WhiB4 regulates the pe/ppe gene family in M. marinum. To understand the potential mechanisms of WhiB4-mediated virulence in M. marinum, we performed RNA-seq analysis and compared global transcripts between WT and ΔwhiB4 grown in 7H9 culture media. Two biologically independent experiments were per- formed and there was excellent agreement between the experiments. The correlation coefficient of total FPKM (Fragments Per Kilobase of exon model per Million mapped reads) counts between two biologically independent Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 4 www.nature.com/scientificreports/ Figure 5. M. marinum ΔwhiB4 was less potent inducing TNF. RAW 264.7 macrophage cells were infected with mycobacteria at MOI of 10. At 3, 12, and 24-hr post infection, cell-free supernatants were collected and the levels of TNF were determined by enzyme-linked immunosorbent assay (ELISA). Data are plotted as mean ± SEM (n = 3), and are representative of two independent experiments. The level of TNF secretion induced by ΔwhiB4 was significantly lower than that of WT or the complemented strain (***p < 0.001; two- way ANOVA). samples of WT was 0.99. Similarly, the correlation coefficient between two independent samples of ΔwhiB4 was 0.98. Averaged FPKM data of each strain from the two independent experiments were used for comparative gene expression analysis. RNA-seq revealed that the expression levels of 387 genes were altered by ≥2 fold in ΔwhiB4, and the differences were statistically significant (Supplementary Table  S1). Of these, 257 genes were downregu- lated and 130 genes were upregulated in ΔwhiB4 compared to WT. The whiB4 transcript in ΔwhiB4 was 15-fold less than in WT, confirming the inactivation of whiB4 in the transposon insertion mutant. A number of genes (21 genes) in the biosynthetic locus of LOSs (MMAR_2307-MMAR_2354) were downregulated , providing addi- tional genetic evidence for the diminished LOSs in M. marinum ΔwhiB4 observed in a previous study . Remarkably, 98 genes that are differentially expressed in ΔwhiB4 encode the PE/PPE family proteins (Supplementary Table S2), suggesting that the pe/ppe gene family are significantly enriched in the WhiB4 regu- −45 lon (the hypergeometric p = 1.8e ). PE family proteins are characterized by the presence of a proline-glutamic acid (PE) motif at positions 8 and 9 within a highly conserved N-terminal domain consisting of around 110 amino acids. Similarly, PPE family proteins contain a proline-proline-glutamic acid (PPE) at positions 7–9 in a highly conserved N-terminal domain of approximately 180 amino acids . The C-terminal domains of both PE and PPE family proteins are highly variable in both size and sequence, and often contain repetitive sequences. 39, 40 Based on the C-terminal sequence, PE/PPE family proteins can be divided into subfamilies . PE-PGRS is the largest PE subfamily and is characterized by a C-terminal domain that contains multiple tandem repeats of a glycine-glycine-alanine (GGA) or a glycine-glycine-asparagine (GGN) motif. Likewise, the PPE-MPTR subfam- ily contains major polymorphic tandem repeats at the C-terminal. The M. marinum genome contains 281 pe/ppe genes, which encodes 27 PE, 148 PE-PGRS, and 106 PPE proteins . About 25.3% (98 out of 387) of genes whose expression changed in ΔwhiB4 are pe/ppe genes, which is ~5 fold of the percentage (5.2%, 281 out of 5424) of total pe/ppe genes present in the M. marinum genome, suggesting that WhiB4 specifically regulates the expression of these multigenic families of genes. WhiB4 primarily acts as a positively regulator of the pe/ppe gene family. Of the 98 pe/ppe genes differentially expressed in ΔwhiB4, 79 were downregulated and 19 were upregulated. Moreover, WhiB4 predominantly regu- lates the pe-pgrs gene subfamily. Sixty-seven pe-pgrs genes were differentially expressed in ΔwhiB4, including 55 downregulated and 12 upregulated. Taken together, these results indicated that WhiB4 is a major regulator of the pe/ppe gene family, especially pe-pgrs genes. Accumulated evidence suggests that the PE/PPE family proteins play a critical role in mycobacterial patho- genesis (reviewed in ref. 42). PE-PGRS30 and PE-PGRS62 were shown to inhibit macrophage phagosomal mat- 43, 44 44 uration , and PE-PGRS30 was required for the full virulence of M. tb in mice . Interestingly, the expression levels of pe-pgrs62 and pe-pgrs30 were reduced 18.6- and 3.3-fold, respectively in ΔwhiB4 compared to that in WT, which provides a partial explanation for the reduced intracellular replication and diminished virulence of ΔwhiB4. Many PE/PPE proteins have been shown to modulate host immune responses (reviewed in refs 45 and 46). Excessive proinflammatory responses can lead to deleterious effects for the host. In active TB, emerging evi- 47–52 dence suggests that a high level of TNF could accelerate the disease progression . Interestingly, we found that ΔwhiB4 induced lower levels of pro-inflammatory response, decreasing the production of TNF by macrophages at early time points (Fig. 5). The dampening immune response by Δ whiB4 is consistent with the reduced histopa- thology in fish infected with this mutant (Fig.  4). WhiB4 differentially regulates antioxidant systems in M. marinum. e Th expression of several anti- oxidant enzymes were upregulated in ΔwhiB4 of M. marinum (Supplementary Table S1), including superoxide dismutase SodA, catalase/peroxidase KatE, and peroxidoxin BcpB. This is consistent with a previous finding that several genes associated with antioxidant systems were upregulated in M. tb ΔwhiB4, including ahpC and ahpD encoding alkyl hydroperoxide reductases . The finding that WhiB4 negatively regulates the expression of antioxidant enzymes is somewhat difficult to reconcile with the positive requirement of WhiB4 in M . mari- num virulence. Interestingly, a recently identified mycothiol-dependent oxidoreductase (mycoredoxin-1, Mrx1, MMAR_1363) was downregulated in ΔwhiB4 of M. marinum (Supplementary Table S1). Mycobacteria do not Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 5 www.nature.com/scientificreports/ Figure 6. A proposed model for the physiological role of WhiB4 in M. marinum. See text for explanations. contain glutathione but produce functionally equivalent mycothiol that is present in millimolar concentrations. Mycothiol is therefore a major redox buffer against oxidative stress . The ability of Mrx1 to couple the reduc- ing power of mycothiol to reduce oxidized cellular proteins was recently demonstrated in AhpE of M. tb . It is conceivable that Mrx-1 may use mycothiol as a cofactor and reduce WhiB4. Based on these observations, we propose a model to explain the physiological function of WhiB4 in M. marinum (Fig. 6). In the presence of oxygen, the [4Fe-4S] cluster in WhiB4 is quickly destroyed and oxidized to disulfide bonds, which activates the DNA binding activity of WhiB4 . Oxidized WhiB4 would activate the transcription of pe/ppe genes, which would facilitate bacterial intracellular replication and survival in the host. At the same time, oxidized WhiB4 would repress the expression of antioxidant enzymes and consequently maintain a relatively oxidizing environment. As a result, more oxidized WhiB4 would be generated. As these processes continue, the accumulation of Mrx1, which is dependent on oxidized WhiB4, would form a negative feedback regulation. Mrx1 would use mycothiol as a cofactor to reduce oxidized WhiB4 and eventually lead to the formation of [4Fe-4S]-containing WhiB4. The holo-WhiB4 would then lose its DNA binding activity and antioxidant enzymes (SodA, KatE) would be de-repressed, which would reduce the oxidative stress and return the system to its original state. Discussion In this study, we found that WhiB4 plays similar yet distinct roles in M. marinum and M. tb. WhiB4 modulates the oxidative stress response in M. marinum by repressing the expression of antioxidant enzymes including SodA and KatE, which is similar to a previous finding of WhiB4 in M . tb . However, WhiB4 is required for virulence in M. marinum. M. marinum ΔwhiB4 exhibited impaired replication in macrophages and diminished virulence in zebras fi h. By contrast, M. tb ΔwhiB4 exhibited enhanced replication in macrophages and increased virulence in lungs of guinea pigs, although its dissemination to spleens was reduced . Sequence analysis reveals that WhiB4 from M. tb and M. marinum shares an overall 83% sequence identity (amino acids), and 100% identity in the Cys-X14-22-Cys-X2-Cys-X5-Cys motif. Therefore, the small sequence variation between WhiB4 of these two organisms cannot account for the difference in physiological function. Our finding that WhiB4 plays a different role in virulence of different pathogenic mycobacteria is not without precedent; a previous study found that dele- tion of whiB3, another member of the whiB gene family, in two nearly identical organisms M. tb and M. bovis, resulted in different virulence phenotypes in guinea pigs . Taken together, these studies suggest that although the WhiB family proteins are highly conserved among mycobacteria, they could play distinct physiological roles in specific mycobacterial species. The different role of WhiB4 in virulence of M. marinum and M. tb likely arises from the difference of the WhiB4 regulon in these organisms. Strikingly, we found that a large number of pe/ppe genes (98) were regulated by WhiB4 in M. marinum. By contrast, only 3 pe/ppe genes (pe35, ppe19, ppe68) were regulated by WhiB4 in M. tb . The pe /ppe gene family represent one of the most intriguing aspects of mycobacterial genomes. The pe /ppe gene family was initially discovered in M. tb, comprising approximately 10% of M. tb genome . Since then, pe/ppe genes have been identified in many pathogenic mycobacteria including the M. tb complex (MTBC, including M. tb, M. africanum, M. canettii, M. bovis and M. microti), M. leprae, M. avium, M. marinum and M. ulcerans. M. marinum has the most extensive repertoire of pe/ppe genes reported (281 in M. marinum compared with 169 in Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 6 www.nature.com/scientificreports/ M. tb and 115 in M. ulcerans) . Nonpathogenic mycobacteria have few pe/ppe genes (e.g., 10 in M. smegmatis). Although the origin of the pe/ppe gene family is unknown, the ancestral pe/ppe genes are associated with the type VII secretion system, including the virulence determinant ESX-1 secretion system . Phylogenetic analysis sug- gests a slow initial expansion of pe/ppe genes, which accompanies the duplication of esx gene clusters, and that the pe-pgrs and ppe-mptr gene subfamilies are the most recent and expansive sublineage, sublineage V . Interestingly, sublineage V is only present in the MTBC and closely related M. marinum and M. ulcerans, suggesting that it may play a role in host-pathogen interactions . Within this context, it is striking to see that majorities of pe/ppe genes (79 out of 98) regulated by WhiB4 belong to sublineage V, including 67 pe-pgrs and 12 ppe-mptr genes (Supplementary Table S2). Furthermore, most of these pe-pgrs and ppe-mptr genes (55 out of 67) were positively regulated by WhiB4, including those that have been experimentally demonstrated to be critical for M. marinum 43, 44, 57 virulence (e.g., pe-pgrs30, pe-pgrs62, and ppe38) . Taken together, these data provide a plausible explanation for the essential role of WhiB4 in M. marinum virulence. We should point out that since the complemented strain was not included in the RNA-seq analysis, we cannot fully exclude the possibility that some differences in the gene expression could be linked to possible WhiB4-independent genetic modification(s) than may occur in a given selected transposon mutant. At present it is not clear why WhiB4 did not perform a similar function in M. tb as in M. marinum, consider- ing that a large number of pe-pgrs and ppe-mptr genes are also present in M. tb genome. Of the 98 pe/ppe genes regulated by WhiB4 in M. marinum, 59 genes have an ortholog in M. tb, 20 genes are restricted to M. marinum and 15 are present in both M. marinum and M. ulcerans (Supplementary Table S2). Previously, it was found that WhiB4 binds DNA non-specifically but has a preference for GC rich DNA sequences . This is consistent with our finding that a large number (67) of pe-pgrs genes were regulated by WhiB4. The high glycine content (up to 50%) of PE-PGRS proteins makes their corresponding genes GC rich. On the other hand, the fact that there are still 81 pe-pgrs genes in M. marinum that are apparently not regulated by WhiB4 implies that cofactors may be required for WhiB4 mediated regulation of pe/ppe genes, and that these factors may be missing in M. tb. Several transcrip- tional regulators including sigma factors SigB and SigD, two-component systems PhoPR and MprAB have been shown to regulate specific pe /ppe genes (reviewed in ref. 42). However, compared to WhiB4, the number of pe/ppe genes controlled by these regulators is much lower. Whether these regulators interact with WhiB4 or whether additional factors are required for WhiB4 mediated regulation of pe/ppe genes will be addressed in future studies. Methods Bacterial strains and culture conditions. M. marinum strain 1218R (ATCC 927) and the transposon insertion mutant M. marinum ΔwhiB4 were routinely grown in Middlebrook 7H9 broth or 7H11 agar ((Difco ) supplemented with 10% OADC (oleic acid-albumin-dextrose-catalase) and 0.05% Tween80. Escherichia coli strain DH5α was used for routine manipulation and propagation of plasmid DNA. E. coli DH5α was grown in LB broth or agar. Antibiotics were added as required: kanamycin, 50 µg/ml for E. coli and 25 µg/ml for mycobacteria; hygromycin, 150 µg/ml for E. coli and 75 µg/ml for mycobacteria. Isolation of transposon insertion whiB4 mutant. The mariner-based transposon system was used 33, 58 to generate a transposon insertion mutant library of M. marinum 1218R as described previously . Colonies with unusual morphology were identified by visual inspection. The method used to localize and identify the 33, 58 transposon-disrupted gene has been previously described . Briey fl , total chromosomal DNA of the transposon insertion mutant was cleaved with BamHI, then self-ligated with T4 DNA ligase and transformed into compe- tent E. coli DH5α λ pir116 cells. Plasmid DNA was isolated from kanamycin resistant E. coli transformants and MycoMar-specific primers were used to determine the DNA sequence at the transposon/chromosomal junction. Molecular cloning. A DNA fragment containing intact whiB4 gene and 400 bp upstream of its start codon was amplified by PCR using the forward primer 5 ′-GCTACGCCAGCCCGTTAGGA-3′ and the reverse primer 5′-GCTTGAGCAGGGTGAGTGCG-3′. M. marinum genomic DNA was used as template. The fragment was ligated into pDRIVE and the resulting construct was isolated and digested with BamHI and HinDIII. The whiB4 containing fragment was ligated into pNBV1 which contains hygromycin resistance gene to generate pWhiB4. Standard electroporation protocols were used for transformation of pWhiB4 into M. marinum ΔwhiB4. Transformants were selected on Middlebrook 7H11 agar containing hygromycin (75 μg/ml) and kanamycin (25 μg/ml). Three randomly selected clones were tested. Scanning electron microscopy analysis. Mycobacterial cultures (5 ml each) grown to mid-log phase were collected and added with two droplets of heparin sodium. The cultures were then fixed, dehydrated and observed using scanning electron microscope SU5000 (Hitachi, Japan). Analysis of M. marinum intracellular growth. Infection of the marine RAW 264.7 macrophage cells and enumeration of intracellular M. marinum were performed as previously described . Briefly, RAW cells were seeded into 24-well plates at a density of 10 cells per well in DMEM medium supplemented with 10% FBS for 24 hr. RAW cells were then infected with M. marinum at multiplicity of infection (MOI) of 10 for 2 hr at 30 °C in 5% CO . Wells were washed twice with sterile PBS and extracellular M. marinum were killed by incubating the tissue culture with 200 μg/ml gentamycin for 2 hr. Cells were again washed twice with PBS and subsequently, incubated at 32 °C in 5% CO in fresh media with 20 μg/ml gentamycin. At different time points, the infected macrophage monolayers (3 wells per strain) were washed 3 times with fresh media and then lysed with 0.1 ml of 1% Triton X-100 to release intracellular mycobacteria. The number of intracellular mycobacteria was enumerated by plating appropriate dilutions on Middlebrook 7H10 agar plates containing appropriate antibiotics. Two inde- pendent experiments were performed. Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 7 www.nature.com/scientificreports/ Cytokine assay. RAW 264.7 macrophage cells were infected with mycobacteria at MOI of 10 as described above. At 3, 12, and 24-hr post infection, cell-free supernatants were collected and the levels of TNF were deter- mined by enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s instructions (Dakewa, China). Two independent experiments were performed. Ethics statement. All of the animal procedures were approved by the local animal care committees at Fudan University. All methods were performed in accordance with the relevant guidelines and regulations. Zebrafish infection. Zebras fi h infection with M . marinum was performed as previously described . Briefly, adult zebras fi h (15 per group) were infected by intraperitoneal injection with a dosage of 10 CFU bacteria per fish or PBS as the negative control and monitored for their survivals. For histopathological study, two fish were sacrificed at the indicated time. Fish were fixed and then dehydrated with ethanol. After paraffin embedding and sectioning, serial paraffin sections were prepared and subjected to hematoxylin and eosin (H&E) staining and Ziehl-Neelsen acid fast staining. Sections were examined under a Nikon Eclipse Ni-U Microscope (Japan), and images were collected with a digital camera. Two independent zebras fi h infection and survival experiments were performed. RNA extraction and illumine sequencing. M. marinum WT and ΔwhiB4 each were grown in 5 dupli- cate cultures, each containing 5 ml 7H9 media to OD600 ~1.5. 1-ml cells from 5 duplicate cultures were collected and mixed together. The bacterial cultures were pelleted and washed twice with PBS. Total RNA (1–3 µ g) was isolated using the RNeasy Mini Kit (Qiagen) and purified using the RNAClean XP Kit (Beckman Coulter) and RNase-Free DNase Set (Qiagen) according to the manufacturer’s instructions. Purified RNA was used to con- struct cDNA library according to the TruSeq Stranded RNA LT Guide from Illumina. The concentration and size distribution of cDNA library was analyzed by Agilent 2100 Bioanalyzer and the average library size was approxi- mately 350 bp. High-throughput sequencing was carried out on an Illumina HiSeq 2500 system according to the manufacturer’s instructions (Illumina HiSeq 2500 User Guide) and 150-bp paired-end reads were obtained. The raw reads were filtered by Seqtk and then mapped to the M. marinum M strain reference sequence (GenBank GCA_000018345.1) using Bowtie2 (version: 2–2.0.5) . Counting of reads per gene was performed using HTSeq 61, 62 followed by TMM (trimmed mean of M-values) normalization . Differentially expressed genes were defined as those with a false discovery rate <0.05 and fold-change >2 using the edgeR software . Two independent experiments were performed. Statistical analysis. Two-Way ANOVA were performed on data of 3 groups at multiple time points (mac- rophage infection experiments). Zebras fi h survival curves were plotted using the Kaplan-Meier method and dif- ferences between curves were analyzed using the log-rank test. References 1. Stewart, G. R., Robertson, B. D. & Young, D. B. Tuberculosis: a problem with persistence. Nat Rev Microbiol 1, 97–105, doi:10.1038/ nrmicro749 (2003). 2. North, R. J. & Jung, Y. J. Immunity to tuberculosis. Annu Rev Immunol 22, 599–623, doi:10.1146/annurev.immunol.22.012703.104635 (2004). 3. Corbett, E. L. et al. Epidemiology of tuberculosis in a high HIV prevalence population provided with enhanced diagnosis of symptomatic disease. PLoS Med 4, e22, doi:06-PLME-RA-0369R2 (2007). 4. Corbett, E. L. et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163, 1009–1021, doi:10.1001/archinte.163.9.1009 (2003). 5. Barry, C. E. 3rd et al. e Th spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7, 845–855, doi:10.1038/nrmicro2236 (2009). 6. Weiss, G. & Schaible, U. E. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev 264, 182–203, doi:10.1111/ imr.12266 (2015). 7. Flynn, J. L., Chan, J. & Lin, P. L. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol 4, 271–278, doi:mi201114 (2011). 8. Russell, D. G. et al. Mycobacterium tuberculosis wears what it eats. Cell Host Microbe 8, 68–76, doi:S1931-3128(10)00180-0 (2010). 9. Rustad, T. R., Sherrid, A. M., Minch, K. J. & Sherman, D. R. Hypoxia: a window into Mycobacterium tuberculosis latency. Cell Microbiol 11, 1151–1159, doi:CMI1325 (2009). 10. Chao, M. C. & Rubin, E. J. Letting sleeping dos lie: does dormancy play a role in tuberculosis? Annu Rev Microbiol 64, 293–311, doi:10.1146/annurev.micro.112408.134043 (2010). 11. Via, L. E. et al. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun 76, 2333–2340, doi:IAI.01515-07 (2008). 12. Gomez, J. E. & McKinney, J. D. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb) 84, 29–44, doi:S1472979203000866 (2004). 13. Boshoff, H. I. & Barry, C. E. 3rd Tuberculosis - metabolism and respiration in the absence of growth. Nat Rev Microbiol 3, 70–80, doi:nrmicro1065 (2005). 14. Kesavan, A. K., Brooks, M., Tufariello, J., Chan, J. & Manabe, Y. C. Tuberculosis genes expressed during persistence and reactivation in the resistant rabbit model. Tuberculosis (Edinb) 89, 17–21, doi:S1472-9792(08)00095-4 (2009). 15. Wayne, L. G. & Sohaskey, C. D. Nonreplicating persistence of mycobacterium tuberculosis. Annu Rev Microbiol 55, 139–163, doi:10.1146/annurev.micro.55.1.139 (2001). 16. Wayne, L. G. Synchronized replication of Mycobacterium tuberculosis. Infect Immun 17, 528–530 (1977). 17. Wayne, L. G. & Hayes, L. G. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64, 2062–2069 (1996). 18. Boon, C. & Dick, T. Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J Bacteriol 184, 6760–6767 (2002). 19. Sherman, D. R. et al. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha -crystallin. Proc Natl Acad Sci USA 98, 7534–7539, doi:10.1073/pnas.121172498 (2001). 20. Park, H. D. et al. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 48, 833–843, doi:3474 (2003). Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 8 www.nature.com/scientificreports/ 21. Galagan, J. E. et al. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499, 178–183, doi:10.1038/ nature12337 (2013). 22. Canetti, G. Present aspects of bacterial resistance in tuberculosis. Am Rev Respir Dis 92, 687–703, doi:10.1164/arrd.1965.92.5.687 (1965). 23. Soliveri, J. A., Gomez, J., Bishai, W. R. & Chater, K. F. Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiology 146(Pt 2), 333–343, doi:10.1099/00221287- 146-2-333 (2000). 24. Wu, M. L. et al. Developmental transcriptome of resting cell formation in Mycobacterium smegmatis. BMC Genomics 17, 837, doi:10.1186/s12864-016-3190-4 (2016). 25. Larsson, C. et al. Gene expression of Mycobacterium tuberculosis putative transcription factors whiB1-7 in redox environments. PLoS ONE 7, e37516, doi:10.1371/journal.pone.0037516 (2012). 26. Ma, S. et al. Integrated Modeling of Gene Regulatory and Metabolic Networks in Mycobacterium tuberculosis. PLoS Comput Biol 11, e1004543, doi:10.1371/journal.pcbi.1004543 (2015). 27. Humpel, A., Gebhard, S., Cook, G. M. & Berney, M. The SigF regulon in Mycobacterium smegmatis reveals roles in adaptation to stationary phase, heat, and oxidative stress. J Bacteriol 192, 2491–2502, doi:10.1128/JB.00035-10 (2010). 28. Alam, M. S., Garg, S. K. & Agrawal, P. Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv. FEBS J 276, 76–93, doi:10.1111/j.1742-4658.2008.06755.x (2009). 29. Alam, M. S., Garg, S. K. & Agrawal, P. Molecular function of WhiB4/Rv3681c of Mycobacterium tuberculosis H37Rv: a [4Fe-4S] cluster co-ordinating protein disulphide reductase. Mol Microbiol 63, 1414–1431, doi:MMI5589 (2007). 30. Chawla, M. et al. Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo. Mol Microbiol 85, 1148–1165, doi:10.1111/j.1365-2958.2012.08165.x (2012). 31. Smith, L. J. et al. Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron-sulfur cluster. Biochem J 432, 417–427, doi:10.1042/BJ20101440 (2010). 32. Singh, A. et al. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog 5, e1000545, doi:10.1371/journal.ppat.1000545 (2009). 33. Ren, H. et al. Identification of the lipooligosaccharide biosynthetic gene cluster from Mycobacterium marinum. Mol Microbiol 63, 1345–1359, doi:MMI5603 (2007). 34. van der Woude, A. D. et al. Unexpected link between lipooligosaccharide biosynthesis and surface protein release in Mycobacterium marinum. J Biol Chem 287, 20417–20429, doi:10.1074/jbc.M111.336461 (2012). 35. Middlebrook, W. R. & Phillips, H. The action of formaldehyde on the cystine disulphide linkages of wool: 2. The conversion of subfraction A of the combined cystine into combined lanthionine and djenkolic acid and subfraction B into combined thiazolidine- 4-carboxylic acid. Biochem J 41, 218–223 (1947). 36. Koch, R. Classics in infectious diseases. The etiology of tuberculosis: Robert Koch. Berlin, Germany 1882. Rev Infect Dis 4, 1270–1274 (1982). 37. Darzins, E. & Fahr, G. Cord-forming property, lethality and pathogenicity of Mycobacteria. Dis Chest 30, 642–648 (1956). 38. Tobin, D. M. & Ramakrishnan, L. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol 10, 1027–1039, doi:CMI1133 (2008). 39. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544, doi:10.1038/31159 (1998). 40. Gey van Pittius, N. C. et al. Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol 6, 95, doi:1471-2148-6-95 (2006). 41. Stinear, T. P. et al. Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res 18, 729–741, doi:10.1101/gr.075069.107 (2008). 42. Fishbein, S., van Wyk, N., Warren, R. M. & Sampson, S. L. Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Mol Microbiol 96, 901–916, doi:10.1111/mmi.12981 (2015). 43. Huang, Y. et al. Phagolysosome maturation of macrophages was reduced by PE_PGRS 62 protein expressing in Mycobacterium smegmatis and induced in IFN-gamma priming. Vet Microbiol 160, 117–125, doi:10.1016/j.vetmic.2012.05.011 (2012). 44. Iantomasi, R. et al. PE_PGRS30 is required for the full virulence of Mycobacterium tuberculosis. Cell Microbiol 14, 356–367, doi:10.1111/j.1462-5822.2011.01721.x (2012). 45. Mukhopadhyay, S. & Balaji, K. N. The PE and PPE proteins of Mycobacterium tuberculosis. Tuberculosis (Edinb) 91, 441–447, doi:10.1016/j.tube.2011.04.004 (2011). 46. Sampson, S. L. Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin Dev Immunol 2011, 497203, doi:10.1155/2011/497203 (2011). 47. Bekker, L. G. et al. Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent. Infect Immun 68, 6954–6961 (2000). 48. Blackmore, T. K., Manning, L., Taylor, W. J. & Wallis, R. S. Therapeutic use of infliximab in tuberculosis to control severe paradoxical reaction of the brain and lymph nodes. Clin Infect Dis 47, e83–85, doi:10.1086/592695 (2008). 49. wa Th ites, G. E. et al . Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl J Med 351, 1741–1751, doi:351/17/1741 (2004). 50. Goldstone, R. M., Goonesekera, S. D., Bloom, B. R. & Sampson, S. L. The transcriptional regulator Rv0485 modulates the expression of a pe and ppe gene pair and is required for Mycobacterium tuberculosis virulence. Infect Immun 77, 4654–4667, doi:IAI.01495-08 (2009). 51. Tobin, D. M. et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebras fi h and humans. Cell 140, 717–730, doi:S0092-8674(10)00128-5 (2010). 52. Agarwal, N., Lamichhane, G., Gupta, R., Nolan, S. & Bishai, W. R. Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature 460, 98–102, doi:nature08123 (2009). 53. Van Laer, K. et al. Mycoredoxin-1 is one of the missing links in the oxidative stress defence mechanism of Mycobacteria. Mol Microbiol 86, 787–804, doi:10.1111/mmi.12030 (2012). 54. Newton, G. L. et al. Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol 178, 1990–1995 (1996). 55. Hugo, M. et al. Mycothiol/mycoredoxin 1-dependent reduction of the peroxiredoxin AhpE from Mycobacterium tuberculosis. J Biol Chem 289, 5228–5239, doi:10.1074/jbc.M113.510248 (2014). 56. Steyn, A. J. et al. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc Natl Acad Sci USA 99, 3147–3152, doi:10.1073/pnas.052705399 (2002). 57. Dong, D. et al. PPE38 modulates the innate immune response and is required for Mycobacterium marinum virulence. Infect Immun 80, 43–54, doi:10.1128/IAI.05249-11 (2012). 58. Alexander, D. C., Jones, J. R., Tan, T., Chen, J. M. & Liu, J. PimF, a mannosyltransferase of mycobacteria, is involved in the biosynthesis of phosphatidylinositol mannosides and lipoarabinomannan. J Biol Chem 279, 18824–18833, doi:10.1074/jbc. M400791200 (2004). 59. Tan, T., Lee, W. L., Alexander, D. C., Grinstein, S. & Liu, J. The ESAT-6/CFP-10 secretion system of Mycobacterium marinum modulates phagosome maturation. Cell Microbiol 8, 1417–1429, doi:CMI721 (2006). Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 9 www.nature.com/scientificreports/ 60. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25, doi:10.1186/gb-2009-10-3-r25 (2009). 61. Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169, doi:10.1093/bioinformatics/btu638 (2015). 62. Robinson, M. D. & Oshlack, A. A scaling normalization method for die ff rential expression analysis of RNA-seq data. Genome Biol 11, R25, doi:10.1186/gb-2010-11-3-r25 (2010). 63. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for dier ff ential expression analysis of digital gene expression data. Bioinformatics 26, 139–140, doi:10.1093/bioinformatics/btp616 (2010). Acknowledgements This study was supported by grants from the China’s 12th Five Year Programs for the prevention and cure of great infectious diseases (No. 2012ZX10003002-002), Shanghai Municipal Natural Science Foundation (No. 16ZR1402800), International cooperation and exchange program of Shanghai Municipal (No. 16430724000) and Shanghai Science and Technology Commission (13DZ2252000), and a grant from Canadian Institutes of Health Research (MOP-15107). Author Contributions J.W., H.W.R., Z.H.X., J.J., and Y.C.W. performed experiments. J.W., L.Z., and J.L. wrote the manuscript. All authors reviewed the manuscript. Additional Information Supplementary information accompanies this paper at doi:10.1038/s41598-017-03020-4 Competing Interests: The authors declare that they have no competing interests. Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre- ative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not per- mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2017 Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 10 http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Scientific Reports Springer Journals

WhiB4 Regulates the PE/PPE Gene Family and is Essential for Virulence of Mycobacterium marinum

Free
10 pages

Loading next page...
 
/lp/springer_journal/whib4-regulates-the-pe-ppe-gene-family-and-is-essential-for-virulence-gV70MUlTLd
Publisher
Springer Journals
Copyright
Copyright © 2017 by The Author(s)
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
eISSN
2045-2322
D.O.I.
10.1038/s41598-017-03020-4
Publisher site
See Article on Publisher Site

Abstract

www.nature.com/scientificreports OPEN WhiB4 Regulates the PE/PPE Gene Family and is Essential for Virulence of Mycobacterium marinum Received: 15 December 2016 1 1 1 1 1 1,2,3 1,4 Jing Wu , Huan-wei Ru , Zhi-hao Xiang , Jun Jiang , Yu-chen Wang , Lu Zhang & Jun Liu Accepted: 18 April 2017 During the course of infection, pathogenic mycobacteria including Mycobacterium tuberculosis (M. Published: xx xx xxxx tb) encounter host environments of variable oxygen tension, ranging from the hypoxic center of granulomas to the most oxygenated region in the lung cavities. Mycobacterial responses to changes of oxygen tension are critically related to infection outcomes, such as latency and reactivation. WhiB4 is an iron-sulfur containing transcription factor that is highly sensitive to oxygen exposure. In this study, we found that WhiB4 of Mycobacterium marinum (M. marinum), a pathogenic mycobacterial species that is closely related to M. tb, is required for its virulence. M. marinum ΔwhiB4 exhibited defective intracellular replication in macrophages and diminished virulence in zebrafish. Histology analysis revealed that the host had successfully controlled ΔwhiB4 bacteria, forming well-organized granulomas. RNA-seq analysis identified a large number of pe/ppe genes that were regulated by WhiB4, which provides an explanation for the essential role of WhiB4 in M. marinum virulence. Several antioxidant enzymes were also upregulated in ΔwhiB4, supporting its role in modulation of oxidative stress response. Taken together, we have provided new insight into and proposed a model to explain the physiological role of WhiB4. Tuberculosis, caused by Mycobacterium tuberculosis (M. tb), continues to be a major global health problem, caus- ing 1.5 million deaths and 9.6 million new infections in 2014. In the majority of individuals infected with M. 1, 2 tb, the bacteria establish a latent, asymptomatic infection that can persist for decades . About 5–10% of these individuals will develop active disease in their lifetime and the risk of reactivation is markedly increased by host immunosuppression . About one-third of the world’s population is latently infected, representing a large reservoir for reactivation . Understanding the genetic programs that facilitate the entry of M. tb into and emergence from latency will facilitate the development of novel therapeutic strategies. During the course of infection, M. tb must encounter heterogeneous host environments, including the high oxygen tension in the lung alveolus , the reactive oxygen and nitrogen species generated in activated mac- 6 7, 8 rophages , as well as the nutrient depleted and hypoxic center of tuberculous granulomas . How M. tb survives these diverse environments is not fully understood. Of particular interest is the response of M. tb to changes of oxygen tension. Studies from human and animals suggest an intimate link between oxygen tension and the 9–14 9, 15 outcome of M. tb infection . As such, hypoxia is considered a major stimulus that triggers M. tb latency 15–17 and is one of the most frequently used in vitro conditions to mimic the environment of human granulomas . Accordingly, sets of M. tb genes that respond to hypoxia have been identified, such as the extensively studied 18–21 heme-based DosR/S/T regulon . Little is known about the reactivation of M. tb from the persistent state, and presumably access to oxygen is an important requirement. Consistent with this notion, reactivation of latent TB in humans occurs most frequently in the upper lobes of the lung, the most oxygenated region of the body . In the later stage of active pulmonary TB, lung cavities that connect to airways provide oxygen-rich environments, allowing M. tb to reach high density and subsequent spread . Therefore, knowledge on the response of M . tb to oxygen exposure is critically important for understanding the pathogenesis of M. tb. State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Science, Fudan University, Shanghai, China. Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Fudan University, Shanghai, China. Shanghai Engineering Research Center Of Industrial Microorganisms, Shanghai, China. Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada. Correspondence and requests for materials should be addressed to L.Z. (email: zhanglu407@fudan.edu.cn) or J.L. (email: jun.liu@utoronto.ca) Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 1 www.nature.com/scientificreports/ Figure 1. M. marinum ΔwhiB4 exhibited altered colony morphology and was defective in cording formation. (A) M. marinum ΔwhiB4 exhibited dry and rough colony morphology on 7H11 agar, as compared to as compared to the smoother, glossier, morphology of WT or the complemented strain. (B) Cells of WT or the complemented strain formed the serpentine cords, which were not observed for ΔwhiB4. Several recent studies demonstrate that mycobacterial WhiB4 is an oxygen-sensitive transcription factor. WhiB4 is a member of the WhiB superfamily transcription factors that are conserved in actinomycetes, includ- 23–28 ing many mycobacterial species such as M. tb and M. marinum . WhiB4 contains the highly conserved 29, 30 Cys-X14-22-Cys-X2-Cys-X5-Cys motif, which forms a [4Fe-4S] cluster in the holoenzyme . Upon exposure to O , WhiB4 rapidly (within minutes) loses the [4Fe-4S] cluster and leads to an oxidized apo-WhiB4 contain- ing disulfide bonds. Importantly, the oxidized form of WhiB4 has the strongest DNA binding activity . The response of WhiB4 to oxygen exposure occurred much more rapidly than other WhiB proteins (e.g., WhiB1 and 30–32 WhiB3), making it an oxygen sensor . The ability to rapidly respond to oxygen exposure and activate DNA binding activity implies an active role of WhiB4 in mycobacterial virulence. However, deletion of whiB4 from M. tb resulted in hypervirulence in the lungs of guinea pigs, which was attributed to the increased expression of antioxidant enzymes including alkyl hydroperoxide reductases AhpC and AhpD in this strain . Therefore, WhiB4 in M. tb is primarily involved in modulation of oxidative stress response and is apparently not required for virulence. In this study, we found that WhiB4 plays a different role in M . marinum. Unlike in M. tb, inactivation of whiB4 in M. marinum led to loss of virulence in zebras fi h, a natural host of M . marinum, and impaired replication in macrophages. RNA-seq data revealed that WhiB4 positively regulates a large number of pe/ppe gene family in M. marinum, providing an explanation for the essential role of WhiB4 in M. marinum virulence. Our study pro- vides new insight into the biological function of WhiB4 and also indicates a different role for WhiB4 in different pathogenic mycobacteria. Results M. marinum ΔwhiB4 is defective in cording formation. We have isolated a transposon inactivated whiB4 mutant strain of M. marinum, which was identified in a screen of mutation library for altered colony morphology. The transposon was inserted at a TA site in the promoter region of whiB4, 28 bp upstream of the start codon. Since the transposon inactivated transcription of whiB4, we referred this strain ΔwhiB4. The mutant displayed aberrant crustose colony morphology as compared to the smoother, glossier morphology of the WT strain (Fig. 1A). Previously, we showed that changes of colony morphology of M. marinum are oe ft n associated with defective biosynthesis of lipooligosaccharides (LOSs) in the cell wall . Consistently, a recent study found that deletion of whiB4 from M. marinum E11 strain resulted in rough colony morphology and diminished levels of LOSs . Importantly, we found that M. marinum ΔwhiB4 is defective in cording formation (Fig. 1B), a phenotype not previously described. When grown in liquid media, the WT strain formed serpentine cords that are characteristic of pathogenic mycobacteria, including M. marinum. This phenotype was abolished in Δ whiB4. Complementation of ΔwhiB4 with a plasmid pNBV1 containing intact whiB4 gene restored both the colony morphology and cord- ing formation, indicating that inactivation of whiB4 gene is responsible for these phenotypes. M. marinum ΔwhiB4 is defective in intracellular replication. Cording morphology was first 35–37 described by Robert Koch, and previous studies have revealed a correlation between cording and virulence . The defective cording phenotype of the Δ whiB4 strain prompted us to examine if inactivation of whiB4 affects Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 2 www.nature.com/scientificreports/ Figure 2. M. marinum ΔwhiB4 exhibited reduced intracellular survival. RAW macrophage cells were infected with M. marinum strains and the intracellular survival of each strain was determined by determining bacterial CFU at indicated time points post infection. Data are plotted as mean ± SEM (n = 3), and are representative of two independent experiments. The CFU of ΔwhiB4 at day 4 and 5 were significantly lower than that of WT (*p < 0.05; **p < 0.01), or the complemented strain (p < 0.001) as analyzed by two-way ANOVA. Figure 3. M. marinum ΔwhiB4 was attenuated in zebras fi h. (A) Zebras fi h (15 per group) were infected with indicated strain at 10 CFU bacteria per fish, and were monitored for mortalities over a 40-day period. The survival curves were plotted using the Kaplan-Meier method and differences between curves were analyzed using the log-rank test. All fish infected with ΔwhiB4 or PBS survived. The survival curve of the ΔwhiB4 group was significantly different to those of WT (p = 0.0005) or the complemented strain (p < 0.0001). A similar result was found in another independent experiment (B). virulence of M. marinum. We first performed macrophage infection experiments to determine the intracellular growth of ΔwhiB4. RAW macrophages were infected with WT, ΔwhiB4, or the complemented strain of M. mari- num and the intracellular growth of bacteria were assayed by enumerating the bacterial number (colony forming unit, CFU) at different time points post-infection. Both WT and the complemented strain grew substantially inside macrophages. By contrast, the growth of ΔwhiB4 inside macrophages was significantly reduced (Fig.  2). All three strains exhibited equivalent growth in 7H9 media. Taken together, these data suggest that whiB4 is required for the intracellular replication of M. marinum. M. marinum ΔwhiB4 is attenuated in zebrafish. Zebras fi h are a natural host of M. marinum and have been widely used as a laboratory model for studying M. marinum infection, which manifests both acute dissem- inated disease and chronic persistent infection . To assess the role of whiB4 in virulence, adult zebrafish (15 per group) were infected with WT, ΔwhiB4, or the complemented strain of M. marinum, and were monitored for survival. The median survival time of fish infected with WT and the complemented strain was 18- and 17- days, respectively (Fig. 3A). By contrast, all zebras fi h infected with ΔwhiB4 survived during the 40-day course of experiments. Log-rank analysis indicated that the survival curve of the fish group infected with ΔwhiB4 was sig- nificantly die ff rent to the groups of fish infected with WT ( p = 0.0005) or the complemented strain (p < 0.0001). e Th re was no significant die ff rence between the survival curves of fish infected with WT and the complemented strain (p = 0.08). Fish infected with ΔwhiB4 also exhibited significantly less severe pathology than those infected with WT or the complemented strain. At week 3 post infection, fish infected with WT or the complemented strain exhib- ited severe tissue damage in multiple organs, including livers, kidneys and intestines. Numerous bacteria were detected in these organs. As an example, fish liver infected with WT M. marinum is shown (Fig. 4A,B). The bac- teria had spread extensively and there were no organized granulomas observed at this stage of infection. By con- trast, there was no discernible pathology in livers or other organs of fish infected with Δ whiB4 at the same period (week 3 post infection) (Fig. 4C). A few granulomas were detected in the livers of fish infected with Δ whiB4 at week 4 post infection (Fig. 4D,E). The granulomas were well organized with bacteria contained inside (Fig.  4F), indicating a successful control of bacterial spread by the host. Taken together, these results demonstrated that inactivation of whiB4 in M. marinum greatly reduced its virulence in zebras fi h. Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 3 www.nature.com/scientificreports/ Figure 4. M. marinum ΔwhiB4 caused less severe pathology. Histological analysis of fish tissues from the experiment described in Fig. 3A. (A,B) Liver sections of fish infected with WT M. marinum at 3 weeks post- challenge. Samples were analyzed with hematoxylin and eosin (H&E) staining (A) and Ziehl-Neelsen method of acid fast staining (B). Both are 20× magnification. (C) H&E staining of liver sections of fish infected with ΔwhiB4 at 3 weeks post-infection (4× magnification). (D,E) Liver sections of fish infected with ΔwhiB4 at 3 weeks post-infection (10× magnification) and stained with H&E (D) or Ziehl-Neelsen (E). The well-organized granuloma observed in (E, white star) was zoomed in for better visualization (F), 40× magnification. A similar result was found in another independent experiment (Fig. 3B). The median survival time of fish infected with WT or the complemented strains was both 28 days, whereas 13 out of 14 fish infected with ΔwhiB4 survived. Consistently, there was a significant difference between the survival curve of Δ whiB4 infected group and groups infected with WT (p = 0.007, log-rank analysis) or the complemented strain (p = 0.003). There is no significant difference between the survival curves of fish infected with WT and the complemented strain (p = 0.98). WhiB4 regulates the pe/ppe gene family in M. marinum. To understand the potential mechanisms of WhiB4-mediated virulence in M. marinum, we performed RNA-seq analysis and compared global transcripts between WT and ΔwhiB4 grown in 7H9 culture media. Two biologically independent experiments were per- formed and there was excellent agreement between the experiments. The correlation coefficient of total FPKM (Fragments Per Kilobase of exon model per Million mapped reads) counts between two biologically independent Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 4 www.nature.com/scientificreports/ Figure 5. M. marinum ΔwhiB4 was less potent inducing TNF. RAW 264.7 macrophage cells were infected with mycobacteria at MOI of 10. At 3, 12, and 24-hr post infection, cell-free supernatants were collected and the levels of TNF were determined by enzyme-linked immunosorbent assay (ELISA). Data are plotted as mean ± SEM (n = 3), and are representative of two independent experiments. The level of TNF secretion induced by ΔwhiB4 was significantly lower than that of WT or the complemented strain (***p < 0.001; two- way ANOVA). samples of WT was 0.99. Similarly, the correlation coefficient between two independent samples of ΔwhiB4 was 0.98. Averaged FPKM data of each strain from the two independent experiments were used for comparative gene expression analysis. RNA-seq revealed that the expression levels of 387 genes were altered by ≥2 fold in ΔwhiB4, and the differences were statistically significant (Supplementary Table  S1). Of these, 257 genes were downregu- lated and 130 genes were upregulated in ΔwhiB4 compared to WT. The whiB4 transcript in ΔwhiB4 was 15-fold less than in WT, confirming the inactivation of whiB4 in the transposon insertion mutant. A number of genes (21 genes) in the biosynthetic locus of LOSs (MMAR_2307-MMAR_2354) were downregulated , providing addi- tional genetic evidence for the diminished LOSs in M. marinum ΔwhiB4 observed in a previous study . Remarkably, 98 genes that are differentially expressed in ΔwhiB4 encode the PE/PPE family proteins (Supplementary Table S2), suggesting that the pe/ppe gene family are significantly enriched in the WhiB4 regu- −45 lon (the hypergeometric p = 1.8e ). PE family proteins are characterized by the presence of a proline-glutamic acid (PE) motif at positions 8 and 9 within a highly conserved N-terminal domain consisting of around 110 amino acids. Similarly, PPE family proteins contain a proline-proline-glutamic acid (PPE) at positions 7–9 in a highly conserved N-terminal domain of approximately 180 amino acids . The C-terminal domains of both PE and PPE family proteins are highly variable in both size and sequence, and often contain repetitive sequences. 39, 40 Based on the C-terminal sequence, PE/PPE family proteins can be divided into subfamilies . PE-PGRS is the largest PE subfamily and is characterized by a C-terminal domain that contains multiple tandem repeats of a glycine-glycine-alanine (GGA) or a glycine-glycine-asparagine (GGN) motif. Likewise, the PPE-MPTR subfam- ily contains major polymorphic tandem repeats at the C-terminal. The M. marinum genome contains 281 pe/ppe genes, which encodes 27 PE, 148 PE-PGRS, and 106 PPE proteins . About 25.3% (98 out of 387) of genes whose expression changed in ΔwhiB4 are pe/ppe genes, which is ~5 fold of the percentage (5.2%, 281 out of 5424) of total pe/ppe genes present in the M. marinum genome, suggesting that WhiB4 specifically regulates the expression of these multigenic families of genes. WhiB4 primarily acts as a positively regulator of the pe/ppe gene family. Of the 98 pe/ppe genes differentially expressed in ΔwhiB4, 79 were downregulated and 19 were upregulated. Moreover, WhiB4 predominantly regu- lates the pe-pgrs gene subfamily. Sixty-seven pe-pgrs genes were differentially expressed in ΔwhiB4, including 55 downregulated and 12 upregulated. Taken together, these results indicated that WhiB4 is a major regulator of the pe/ppe gene family, especially pe-pgrs genes. Accumulated evidence suggests that the PE/PPE family proteins play a critical role in mycobacterial patho- genesis (reviewed in ref. 42). PE-PGRS30 and PE-PGRS62 were shown to inhibit macrophage phagosomal mat- 43, 44 44 uration , and PE-PGRS30 was required for the full virulence of M. tb in mice . Interestingly, the expression levels of pe-pgrs62 and pe-pgrs30 were reduced 18.6- and 3.3-fold, respectively in ΔwhiB4 compared to that in WT, which provides a partial explanation for the reduced intracellular replication and diminished virulence of ΔwhiB4. Many PE/PPE proteins have been shown to modulate host immune responses (reviewed in refs 45 and 46). Excessive proinflammatory responses can lead to deleterious effects for the host. In active TB, emerging evi- 47–52 dence suggests that a high level of TNF could accelerate the disease progression . Interestingly, we found that ΔwhiB4 induced lower levels of pro-inflammatory response, decreasing the production of TNF by macrophages at early time points (Fig. 5). The dampening immune response by Δ whiB4 is consistent with the reduced histopa- thology in fish infected with this mutant (Fig.  4). WhiB4 differentially regulates antioxidant systems in M. marinum. e Th expression of several anti- oxidant enzymes were upregulated in ΔwhiB4 of M. marinum (Supplementary Table S1), including superoxide dismutase SodA, catalase/peroxidase KatE, and peroxidoxin BcpB. This is consistent with a previous finding that several genes associated with antioxidant systems were upregulated in M. tb ΔwhiB4, including ahpC and ahpD encoding alkyl hydroperoxide reductases . The finding that WhiB4 negatively regulates the expression of antioxidant enzymes is somewhat difficult to reconcile with the positive requirement of WhiB4 in M . mari- num virulence. Interestingly, a recently identified mycothiol-dependent oxidoreductase (mycoredoxin-1, Mrx1, MMAR_1363) was downregulated in ΔwhiB4 of M. marinum (Supplementary Table S1). Mycobacteria do not Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 5 www.nature.com/scientificreports/ Figure 6. A proposed model for the physiological role of WhiB4 in M. marinum. See text for explanations. contain glutathione but produce functionally equivalent mycothiol that is present in millimolar concentrations. Mycothiol is therefore a major redox buffer against oxidative stress . The ability of Mrx1 to couple the reduc- ing power of mycothiol to reduce oxidized cellular proteins was recently demonstrated in AhpE of M. tb . It is conceivable that Mrx-1 may use mycothiol as a cofactor and reduce WhiB4. Based on these observations, we propose a model to explain the physiological function of WhiB4 in M. marinum (Fig. 6). In the presence of oxygen, the [4Fe-4S] cluster in WhiB4 is quickly destroyed and oxidized to disulfide bonds, which activates the DNA binding activity of WhiB4 . Oxidized WhiB4 would activate the transcription of pe/ppe genes, which would facilitate bacterial intracellular replication and survival in the host. At the same time, oxidized WhiB4 would repress the expression of antioxidant enzymes and consequently maintain a relatively oxidizing environment. As a result, more oxidized WhiB4 would be generated. As these processes continue, the accumulation of Mrx1, which is dependent on oxidized WhiB4, would form a negative feedback regulation. Mrx1 would use mycothiol as a cofactor to reduce oxidized WhiB4 and eventually lead to the formation of [4Fe-4S]-containing WhiB4. The holo-WhiB4 would then lose its DNA binding activity and antioxidant enzymes (SodA, KatE) would be de-repressed, which would reduce the oxidative stress and return the system to its original state. Discussion In this study, we found that WhiB4 plays similar yet distinct roles in M. marinum and M. tb. WhiB4 modulates the oxidative stress response in M. marinum by repressing the expression of antioxidant enzymes including SodA and KatE, which is similar to a previous finding of WhiB4 in M . tb . However, WhiB4 is required for virulence in M. marinum. M. marinum ΔwhiB4 exhibited impaired replication in macrophages and diminished virulence in zebras fi h. By contrast, M. tb ΔwhiB4 exhibited enhanced replication in macrophages and increased virulence in lungs of guinea pigs, although its dissemination to spleens was reduced . Sequence analysis reveals that WhiB4 from M. tb and M. marinum shares an overall 83% sequence identity (amino acids), and 100% identity in the Cys-X14-22-Cys-X2-Cys-X5-Cys motif. Therefore, the small sequence variation between WhiB4 of these two organisms cannot account for the difference in physiological function. Our finding that WhiB4 plays a different role in virulence of different pathogenic mycobacteria is not without precedent; a previous study found that dele- tion of whiB3, another member of the whiB gene family, in two nearly identical organisms M. tb and M. bovis, resulted in different virulence phenotypes in guinea pigs . Taken together, these studies suggest that although the WhiB family proteins are highly conserved among mycobacteria, they could play distinct physiological roles in specific mycobacterial species. The different role of WhiB4 in virulence of M. marinum and M. tb likely arises from the difference of the WhiB4 regulon in these organisms. Strikingly, we found that a large number of pe/ppe genes (98) were regulated by WhiB4 in M. marinum. By contrast, only 3 pe/ppe genes (pe35, ppe19, ppe68) were regulated by WhiB4 in M. tb . The pe /ppe gene family represent one of the most intriguing aspects of mycobacterial genomes. The pe /ppe gene family was initially discovered in M. tb, comprising approximately 10% of M. tb genome . Since then, pe/ppe genes have been identified in many pathogenic mycobacteria including the M. tb complex (MTBC, including M. tb, M. africanum, M. canettii, M. bovis and M. microti), M. leprae, M. avium, M. marinum and M. ulcerans. M. marinum has the most extensive repertoire of pe/ppe genes reported (281 in M. marinum compared with 169 in Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 6 www.nature.com/scientificreports/ M. tb and 115 in M. ulcerans) . Nonpathogenic mycobacteria have few pe/ppe genes (e.g., 10 in M. smegmatis). Although the origin of the pe/ppe gene family is unknown, the ancestral pe/ppe genes are associated with the type VII secretion system, including the virulence determinant ESX-1 secretion system . Phylogenetic analysis sug- gests a slow initial expansion of pe/ppe genes, which accompanies the duplication of esx gene clusters, and that the pe-pgrs and ppe-mptr gene subfamilies are the most recent and expansive sublineage, sublineage V . Interestingly, sublineage V is only present in the MTBC and closely related M. marinum and M. ulcerans, suggesting that it may play a role in host-pathogen interactions . Within this context, it is striking to see that majorities of pe/ppe genes (79 out of 98) regulated by WhiB4 belong to sublineage V, including 67 pe-pgrs and 12 ppe-mptr genes (Supplementary Table S2). Furthermore, most of these pe-pgrs and ppe-mptr genes (55 out of 67) were positively regulated by WhiB4, including those that have been experimentally demonstrated to be critical for M. marinum 43, 44, 57 virulence (e.g., pe-pgrs30, pe-pgrs62, and ppe38) . Taken together, these data provide a plausible explanation for the essential role of WhiB4 in M. marinum virulence. We should point out that since the complemented strain was not included in the RNA-seq analysis, we cannot fully exclude the possibility that some differences in the gene expression could be linked to possible WhiB4-independent genetic modification(s) than may occur in a given selected transposon mutant. At present it is not clear why WhiB4 did not perform a similar function in M. tb as in M. marinum, consider- ing that a large number of pe-pgrs and ppe-mptr genes are also present in M. tb genome. Of the 98 pe/ppe genes regulated by WhiB4 in M. marinum, 59 genes have an ortholog in M. tb, 20 genes are restricted to M. marinum and 15 are present in both M. marinum and M. ulcerans (Supplementary Table S2). Previously, it was found that WhiB4 binds DNA non-specifically but has a preference for GC rich DNA sequences . This is consistent with our finding that a large number (67) of pe-pgrs genes were regulated by WhiB4. The high glycine content (up to 50%) of PE-PGRS proteins makes their corresponding genes GC rich. On the other hand, the fact that there are still 81 pe-pgrs genes in M. marinum that are apparently not regulated by WhiB4 implies that cofactors may be required for WhiB4 mediated regulation of pe/ppe genes, and that these factors may be missing in M. tb. Several transcrip- tional regulators including sigma factors SigB and SigD, two-component systems PhoPR and MprAB have been shown to regulate specific pe /ppe genes (reviewed in ref. 42). However, compared to WhiB4, the number of pe/ppe genes controlled by these regulators is much lower. Whether these regulators interact with WhiB4 or whether additional factors are required for WhiB4 mediated regulation of pe/ppe genes will be addressed in future studies. Methods Bacterial strains and culture conditions. M. marinum strain 1218R (ATCC 927) and the transposon insertion mutant M. marinum ΔwhiB4 were routinely grown in Middlebrook 7H9 broth or 7H11 agar ((Difco ) supplemented with 10% OADC (oleic acid-albumin-dextrose-catalase) and 0.05% Tween80. Escherichia coli strain DH5α was used for routine manipulation and propagation of plasmid DNA. E. coli DH5α was grown in LB broth or agar. Antibiotics were added as required: kanamycin, 50 µg/ml for E. coli and 25 µg/ml for mycobacteria; hygromycin, 150 µg/ml for E. coli and 75 µg/ml for mycobacteria. Isolation of transposon insertion whiB4 mutant. The mariner-based transposon system was used 33, 58 to generate a transposon insertion mutant library of M. marinum 1218R as described previously . Colonies with unusual morphology were identified by visual inspection. The method used to localize and identify the 33, 58 transposon-disrupted gene has been previously described . Briey fl , total chromosomal DNA of the transposon insertion mutant was cleaved with BamHI, then self-ligated with T4 DNA ligase and transformed into compe- tent E. coli DH5α λ pir116 cells. Plasmid DNA was isolated from kanamycin resistant E. coli transformants and MycoMar-specific primers were used to determine the DNA sequence at the transposon/chromosomal junction. Molecular cloning. A DNA fragment containing intact whiB4 gene and 400 bp upstream of its start codon was amplified by PCR using the forward primer 5 ′-GCTACGCCAGCCCGTTAGGA-3′ and the reverse primer 5′-GCTTGAGCAGGGTGAGTGCG-3′. M. marinum genomic DNA was used as template. The fragment was ligated into pDRIVE and the resulting construct was isolated and digested with BamHI and HinDIII. The whiB4 containing fragment was ligated into pNBV1 which contains hygromycin resistance gene to generate pWhiB4. Standard electroporation protocols were used for transformation of pWhiB4 into M. marinum ΔwhiB4. Transformants were selected on Middlebrook 7H11 agar containing hygromycin (75 μg/ml) and kanamycin (25 μg/ml). Three randomly selected clones were tested. Scanning electron microscopy analysis. Mycobacterial cultures (5 ml each) grown to mid-log phase were collected and added with two droplets of heparin sodium. The cultures were then fixed, dehydrated and observed using scanning electron microscope SU5000 (Hitachi, Japan). Analysis of M. marinum intracellular growth. Infection of the marine RAW 264.7 macrophage cells and enumeration of intracellular M. marinum were performed as previously described . Briefly, RAW cells were seeded into 24-well plates at a density of 10 cells per well in DMEM medium supplemented with 10% FBS for 24 hr. RAW cells were then infected with M. marinum at multiplicity of infection (MOI) of 10 for 2 hr at 30 °C in 5% CO . Wells were washed twice with sterile PBS and extracellular M. marinum were killed by incubating the tissue culture with 200 μg/ml gentamycin for 2 hr. Cells were again washed twice with PBS and subsequently, incubated at 32 °C in 5% CO in fresh media with 20 μg/ml gentamycin. At different time points, the infected macrophage monolayers (3 wells per strain) were washed 3 times with fresh media and then lysed with 0.1 ml of 1% Triton X-100 to release intracellular mycobacteria. The number of intracellular mycobacteria was enumerated by plating appropriate dilutions on Middlebrook 7H10 agar plates containing appropriate antibiotics. Two inde- pendent experiments were performed. Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 7 www.nature.com/scientificreports/ Cytokine assay. RAW 264.7 macrophage cells were infected with mycobacteria at MOI of 10 as described above. At 3, 12, and 24-hr post infection, cell-free supernatants were collected and the levels of TNF were deter- mined by enzyme-linked immunosorbent assay (ELISA) according to the manufacturer’s instructions (Dakewa, China). Two independent experiments were performed. Ethics statement. All of the animal procedures were approved by the local animal care committees at Fudan University. All methods were performed in accordance with the relevant guidelines and regulations. Zebrafish infection. Zebras fi h infection with M . marinum was performed as previously described . Briefly, adult zebras fi h (15 per group) were infected by intraperitoneal injection with a dosage of 10 CFU bacteria per fish or PBS as the negative control and monitored for their survivals. For histopathological study, two fish were sacrificed at the indicated time. Fish were fixed and then dehydrated with ethanol. After paraffin embedding and sectioning, serial paraffin sections were prepared and subjected to hematoxylin and eosin (H&E) staining and Ziehl-Neelsen acid fast staining. Sections were examined under a Nikon Eclipse Ni-U Microscope (Japan), and images were collected with a digital camera. Two independent zebras fi h infection and survival experiments were performed. RNA extraction and illumine sequencing. M. marinum WT and ΔwhiB4 each were grown in 5 dupli- cate cultures, each containing 5 ml 7H9 media to OD600 ~1.5. 1-ml cells from 5 duplicate cultures were collected and mixed together. The bacterial cultures were pelleted and washed twice with PBS. Total RNA (1–3 µ g) was isolated using the RNeasy Mini Kit (Qiagen) and purified using the RNAClean XP Kit (Beckman Coulter) and RNase-Free DNase Set (Qiagen) according to the manufacturer’s instructions. Purified RNA was used to con- struct cDNA library according to the TruSeq Stranded RNA LT Guide from Illumina. The concentration and size distribution of cDNA library was analyzed by Agilent 2100 Bioanalyzer and the average library size was approxi- mately 350 bp. High-throughput sequencing was carried out on an Illumina HiSeq 2500 system according to the manufacturer’s instructions (Illumina HiSeq 2500 User Guide) and 150-bp paired-end reads were obtained. The raw reads were filtered by Seqtk and then mapped to the M. marinum M strain reference sequence (GenBank GCA_000018345.1) using Bowtie2 (version: 2–2.0.5) . Counting of reads per gene was performed using HTSeq 61, 62 followed by TMM (trimmed mean of M-values) normalization . Differentially expressed genes were defined as those with a false discovery rate <0.05 and fold-change >2 using the edgeR software . Two independent experiments were performed. Statistical analysis. Two-Way ANOVA were performed on data of 3 groups at multiple time points (mac- rophage infection experiments). Zebras fi h survival curves were plotted using the Kaplan-Meier method and dif- ferences between curves were analyzed using the log-rank test. References 1. Stewart, G. R., Robertson, B. D. & Young, D. B. Tuberculosis: a problem with persistence. Nat Rev Microbiol 1, 97–105, doi:10.1038/ nrmicro749 (2003). 2. North, R. J. & Jung, Y. J. Immunity to tuberculosis. Annu Rev Immunol 22, 599–623, doi:10.1146/annurev.immunol.22.012703.104635 (2004). 3. Corbett, E. L. et al. Epidemiology of tuberculosis in a high HIV prevalence population provided with enhanced diagnosis of symptomatic disease. PLoS Med 4, e22, doi:06-PLME-RA-0369R2 (2007). 4. Corbett, E. L. et al. The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch Intern Med 163, 1009–1021, doi:10.1001/archinte.163.9.1009 (2003). 5. Barry, C. E. 3rd et al. e Th spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol 7, 845–855, doi:10.1038/nrmicro2236 (2009). 6. Weiss, G. & Schaible, U. E. Macrophage defense mechanisms against intracellular bacteria. Immunol Rev 264, 182–203, doi:10.1111/ imr.12266 (2015). 7. Flynn, J. L., Chan, J. & Lin, P. L. Macrophages and control of granulomatous inflammation in tuberculosis. Mucosal Immunol 4, 271–278, doi:mi201114 (2011). 8. Russell, D. G. et al. Mycobacterium tuberculosis wears what it eats. Cell Host Microbe 8, 68–76, doi:S1931-3128(10)00180-0 (2010). 9. Rustad, T. R., Sherrid, A. M., Minch, K. J. & Sherman, D. R. Hypoxia: a window into Mycobacterium tuberculosis latency. Cell Microbiol 11, 1151–1159, doi:CMI1325 (2009). 10. Chao, M. C. & Rubin, E. J. Letting sleeping dos lie: does dormancy play a role in tuberculosis? Annu Rev Microbiol 64, 293–311, doi:10.1146/annurev.micro.112408.134043 (2010). 11. Via, L. E. et al. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun 76, 2333–2340, doi:IAI.01515-07 (2008). 12. Gomez, J. E. & McKinney, J. D. M. tuberculosis persistence, latency, and drug tolerance. Tuberculosis (Edinb) 84, 29–44, doi:S1472979203000866 (2004). 13. Boshoff, H. I. & Barry, C. E. 3rd Tuberculosis - metabolism and respiration in the absence of growth. Nat Rev Microbiol 3, 70–80, doi:nrmicro1065 (2005). 14. Kesavan, A. K., Brooks, M., Tufariello, J., Chan, J. & Manabe, Y. C. Tuberculosis genes expressed during persistence and reactivation in the resistant rabbit model. Tuberculosis (Edinb) 89, 17–21, doi:S1472-9792(08)00095-4 (2009). 15. Wayne, L. G. & Sohaskey, C. D. Nonreplicating persistence of mycobacterium tuberculosis. Annu Rev Microbiol 55, 139–163, doi:10.1146/annurev.micro.55.1.139 (2001). 16. Wayne, L. G. Synchronized replication of Mycobacterium tuberculosis. Infect Immun 17, 528–530 (1977). 17. Wayne, L. G. & Hayes, L. G. An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun 64, 2062–2069 (1996). 18. Boon, C. & Dick, T. Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J Bacteriol 184, 6760–6767 (2002). 19. Sherman, D. R. et al. Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha -crystallin. Proc Natl Acad Sci USA 98, 7534–7539, doi:10.1073/pnas.121172498 (2001). 20. Park, H. D. et al. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 48, 833–843, doi:3474 (2003). Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 8 www.nature.com/scientificreports/ 21. Galagan, J. E. et al. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499, 178–183, doi:10.1038/ nature12337 (2013). 22. Canetti, G. Present aspects of bacterial resistance in tuberculosis. Am Rev Respir Dis 92, 687–703, doi:10.1164/arrd.1965.92.5.687 (1965). 23. Soliveri, J. A., Gomez, J., Bishai, W. R. & Chater, K. F. Multiple paralogous genes related to the Streptomyces coelicolor developmental regulatory gene whiB are present in Streptomyces and other actinomycetes. Microbiology 146(Pt 2), 333–343, doi:10.1099/00221287- 146-2-333 (2000). 24. Wu, M. L. et al. Developmental transcriptome of resting cell formation in Mycobacterium smegmatis. BMC Genomics 17, 837, doi:10.1186/s12864-016-3190-4 (2016). 25. Larsson, C. et al. Gene expression of Mycobacterium tuberculosis putative transcription factors whiB1-7 in redox environments. PLoS ONE 7, e37516, doi:10.1371/journal.pone.0037516 (2012). 26. Ma, S. et al. Integrated Modeling of Gene Regulatory and Metabolic Networks in Mycobacterium tuberculosis. PLoS Comput Biol 11, e1004543, doi:10.1371/journal.pcbi.1004543 (2015). 27. Humpel, A., Gebhard, S., Cook, G. M. & Berney, M. The SigF regulon in Mycobacterium smegmatis reveals roles in adaptation to stationary phase, heat, and oxidative stress. J Bacteriol 192, 2491–2502, doi:10.1128/JB.00035-10 (2010). 28. Alam, M. S., Garg, S. K. & Agrawal, P. Studies on structural and functional divergence among seven WhiB proteins of Mycobacterium tuberculosis H37Rv. FEBS J 276, 76–93, doi:10.1111/j.1742-4658.2008.06755.x (2009). 29. Alam, M. S., Garg, S. K. & Agrawal, P. Molecular function of WhiB4/Rv3681c of Mycobacterium tuberculosis H37Rv: a [4Fe-4S] cluster co-ordinating protein disulphide reductase. Mol Microbiol 63, 1414–1431, doi:MMI5589 (2007). 30. Chawla, M. et al. Mycobacterium tuberculosis WhiB4 regulates oxidative stress response to modulate survival and dissemination in vivo. Mol Microbiol 85, 1148–1165, doi:10.1111/j.1365-2958.2012.08165.x (2012). 31. Smith, L. J. et al. Mycobacterium tuberculosis WhiB1 is an essential DNA-binding protein with a nitric oxide-sensitive iron-sulfur cluster. Biochem J 432, 417–427, doi:10.1042/BJ20101440 (2010). 32. Singh, A. et al. Mycobacterium tuberculosis WhiB3 maintains redox homeostasis by regulating virulence lipid anabolism to modulate macrophage response. PLoS Pathog 5, e1000545, doi:10.1371/journal.ppat.1000545 (2009). 33. Ren, H. et al. Identification of the lipooligosaccharide biosynthetic gene cluster from Mycobacterium marinum. Mol Microbiol 63, 1345–1359, doi:MMI5603 (2007). 34. van der Woude, A. D. et al. Unexpected link between lipooligosaccharide biosynthesis and surface protein release in Mycobacterium marinum. J Biol Chem 287, 20417–20429, doi:10.1074/jbc.M111.336461 (2012). 35. Middlebrook, W. R. & Phillips, H. The action of formaldehyde on the cystine disulphide linkages of wool: 2. The conversion of subfraction A of the combined cystine into combined lanthionine and djenkolic acid and subfraction B into combined thiazolidine- 4-carboxylic acid. Biochem J 41, 218–223 (1947). 36. Koch, R. Classics in infectious diseases. The etiology of tuberculosis: Robert Koch. Berlin, Germany 1882. Rev Infect Dis 4, 1270–1274 (1982). 37. Darzins, E. & Fahr, G. Cord-forming property, lethality and pathogenicity of Mycobacteria. Dis Chest 30, 642–648 (1956). 38. Tobin, D. M. & Ramakrishnan, L. Comparative pathogenesis of Mycobacterium marinum and Mycobacterium tuberculosis. Cell Microbiol 10, 1027–1039, doi:CMI1133 (2008). 39. Cole, S. T. et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393, 537–544, doi:10.1038/31159 (1998). 40. Gey van Pittius, N. C. et al. Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions. BMC Evol Biol 6, 95, doi:1471-2148-6-95 (2006). 41. Stinear, T. P. et al. Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res 18, 729–741, doi:10.1101/gr.075069.107 (2008). 42. Fishbein, S., van Wyk, N., Warren, R. M. & Sampson, S. L. Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Mol Microbiol 96, 901–916, doi:10.1111/mmi.12981 (2015). 43. Huang, Y. et al. Phagolysosome maturation of macrophages was reduced by PE_PGRS 62 protein expressing in Mycobacterium smegmatis and induced in IFN-gamma priming. Vet Microbiol 160, 117–125, doi:10.1016/j.vetmic.2012.05.011 (2012). 44. Iantomasi, R. et al. PE_PGRS30 is required for the full virulence of Mycobacterium tuberculosis. Cell Microbiol 14, 356–367, doi:10.1111/j.1462-5822.2011.01721.x (2012). 45. Mukhopadhyay, S. & Balaji, K. N. The PE and PPE proteins of Mycobacterium tuberculosis. Tuberculosis (Edinb) 91, 441–447, doi:10.1016/j.tube.2011.04.004 (2011). 46. Sampson, S. L. Mycobacterial PE/PPE proteins at the host-pathogen interface. Clin Dev Immunol 2011, 497203, doi:10.1155/2011/497203 (2011). 47. Bekker, L. G. et al. Immunopathologic effects of tumor necrosis factor alpha in murine mycobacterial infection are dose dependent. Infect Immun 68, 6954–6961 (2000). 48. Blackmore, T. K., Manning, L., Taylor, W. J. & Wallis, R. S. Therapeutic use of infliximab in tuberculosis to control severe paradoxical reaction of the brain and lymph nodes. Clin Infect Dis 47, e83–85, doi:10.1086/592695 (2008). 49. wa Th ites, G. E. et al . Dexamethasone for the treatment of tuberculous meningitis in adolescents and adults. N Engl J Med 351, 1741–1751, doi:351/17/1741 (2004). 50. Goldstone, R. M., Goonesekera, S. D., Bloom, B. R. & Sampson, S. L. The transcriptional regulator Rv0485 modulates the expression of a pe and ppe gene pair and is required for Mycobacterium tuberculosis virulence. Infect Immun 77, 4654–4667, doi:IAI.01495-08 (2009). 51. Tobin, D. M. et al. The lta4h locus modulates susceptibility to mycobacterial infection in zebras fi h and humans. Cell 140, 717–730, doi:S0092-8674(10)00128-5 (2010). 52. Agarwal, N., Lamichhane, G., Gupta, R., Nolan, S. & Bishai, W. R. Cyclic AMP intoxication of macrophages by a Mycobacterium tuberculosis adenylate cyclase. Nature 460, 98–102, doi:nature08123 (2009). 53. Van Laer, K. et al. Mycoredoxin-1 is one of the missing links in the oxidative stress defence mechanism of Mycobacteria. Mol Microbiol 86, 787–804, doi:10.1111/mmi.12030 (2012). 54. Newton, G. L. et al. Distribution of thiols in microorganisms: mycothiol is a major thiol in most actinomycetes. J Bacteriol 178, 1990–1995 (1996). 55. Hugo, M. et al. Mycothiol/mycoredoxin 1-dependent reduction of the peroxiredoxin AhpE from Mycobacterium tuberculosis. J Biol Chem 289, 5228–5239, doi:10.1074/jbc.M113.510248 (2014). 56. Steyn, A. J. et al. Mycobacterium tuberculosis WhiB3 interacts with RpoV to affect host survival but is dispensable for in vivo growth. Proc Natl Acad Sci USA 99, 3147–3152, doi:10.1073/pnas.052705399 (2002). 57. Dong, D. et al. PPE38 modulates the innate immune response and is required for Mycobacterium marinum virulence. Infect Immun 80, 43–54, doi:10.1128/IAI.05249-11 (2012). 58. Alexander, D. C., Jones, J. R., Tan, T., Chen, J. M. & Liu, J. PimF, a mannosyltransferase of mycobacteria, is involved in the biosynthesis of phosphatidylinositol mannosides and lipoarabinomannan. J Biol Chem 279, 18824–18833, doi:10.1074/jbc. M400791200 (2004). 59. Tan, T., Lee, W. L., Alexander, D. C., Grinstein, S. & Liu, J. The ESAT-6/CFP-10 secretion system of Mycobacterium marinum modulates phagosome maturation. Cell Microbiol 8, 1417–1429, doi:CMI721 (2006). Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 9 www.nature.com/scientificreports/ 60. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10, R25, doi:10.1186/gb-2009-10-3-r25 (2009). 61. Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169, doi:10.1093/bioinformatics/btu638 (2015). 62. Robinson, M. D. & Oshlack, A. A scaling normalization method for die ff rential expression analysis of RNA-seq data. Genome Biol 11, R25, doi:10.1186/gb-2010-11-3-r25 (2010). 63. Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for dier ff ential expression analysis of digital gene expression data. Bioinformatics 26, 139–140, doi:10.1093/bioinformatics/btp616 (2010). Acknowledgements This study was supported by grants from the China’s 12th Five Year Programs for the prevention and cure of great infectious diseases (No. 2012ZX10003002-002), Shanghai Municipal Natural Science Foundation (No. 16ZR1402800), International cooperation and exchange program of Shanghai Municipal (No. 16430724000) and Shanghai Science and Technology Commission (13DZ2252000), and a grant from Canadian Institutes of Health Research (MOP-15107). Author Contributions J.W., H.W.R., Z.H.X., J.J., and Y.C.W. performed experiments. J.W., L.Z., and J.L. wrote the manuscript. All authors reviewed the manuscript. Additional Information Supplementary information accompanies this paper at doi:10.1038/s41598-017-03020-4 Competing Interests: The authors declare that they have no competing interests. Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre- ative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not per- mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. © The Author(s) 2017 Scientific Repo R ts | 7: 3007 | DOI:10.1038/s41598-017-03020-4 10

Journal

Scientific ReportsSpringer Journals

Published: Jun 7, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off