When three is greater than five: EEG and fMRI signatures of errors in numerical and physical comparisons

When three is greater than five: EEG and fMRI signatures of errors in numerical and physical... Unravelling the neural mechanisms, which determine performance accuracy, is one of the key concepts in cognitive neuroscience. When compared to correct responses, shorter reaction times are commonly observed behavioural feature of errors committed in typical conflict tasks. Yet, little is known about the origins of this phenomenon. In this study, EEG and fMRI experiments were conducted using the numerical version of the Stroop paradigm, which yielded unique behavioural outcomes. Particularly, errors in numerical comparison had shorter reaction times than correct trials, whereas physical comparison resulted in the opposite pattern. This criss–crossing interaction effect was used as a marker when exploring time-courses of brain activity. Group independent component analysis was applied to neurophysiological data and event-related analysis was conducted on the components’ time-courses. Results revealed one centro-parietal EEG component and one temporo-parietal fMRI neural network, which exhibited significant task and accuracy interactions. Showing linear increase that peaked right after the response onset, the activity of centro-parietal EEG component was linked to the decision variable signal, which reflects a process of accumulating evidence until reaching an action-triggering threshold. Both amplitude measurements and linear fits to the signal provided evidence for distinctive characteristics between numerical and physical comparisons, thereby explaining the behavioural outcomes: errors are committed due to accumulation of evidence in favour of the other (wrong) task instruction. The architecture of the temporo-parietal network, which comprises bilateral inferior temporal and intraparietal regions, is highly consistent with the recently established core “number network”. These findings link perceptual decisions with the generalized magnitude system and impart novel insights into the neural determinants of errors in humans. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Structure and Function Springer Journals

When three is greater than five: EEG and fMRI signatures of errors in numerical and physical comparisons

Loading next page...
 
/lp/springer_journal/when-three-is-greater-than-five-eeg-and-fmri-signatures-of-errors-in-WdkOoFfeHb
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s)
Subject
Biomedicine; Neurosciences; Cell Biology; Neurology
ISSN
1863-2653
eISSN
1863-2661
D.O.I.
10.1007/s00429-017-1527-7
Publisher site
See Article on Publisher Site

Abstract

Unravelling the neural mechanisms, which determine performance accuracy, is one of the key concepts in cognitive neuroscience. When compared to correct responses, shorter reaction times are commonly observed behavioural feature of errors committed in typical conflict tasks. Yet, little is known about the origins of this phenomenon. In this study, EEG and fMRI experiments were conducted using the numerical version of the Stroop paradigm, which yielded unique behavioural outcomes. Particularly, errors in numerical comparison had shorter reaction times than correct trials, whereas physical comparison resulted in the opposite pattern. This criss–crossing interaction effect was used as a marker when exploring time-courses of brain activity. Group independent component analysis was applied to neurophysiological data and event-related analysis was conducted on the components’ time-courses. Results revealed one centro-parietal EEG component and one temporo-parietal fMRI neural network, which exhibited significant task and accuracy interactions. Showing linear increase that peaked right after the response onset, the activity of centro-parietal EEG component was linked to the decision variable signal, which reflects a process of accumulating evidence until reaching an action-triggering threshold. Both amplitude measurements and linear fits to the signal provided evidence for distinctive characteristics between numerical and physical comparisons, thereby explaining the behavioural outcomes: errors are committed due to accumulation of evidence in favour of the other (wrong) task instruction. The architecture of the temporo-parietal network, which comprises bilateral inferior temporal and intraparietal regions, is highly consistent with the recently established core “number network”. These findings link perceptual decisions with the generalized magnitude system and impart novel insights into the neural determinants of errors in humans.

Journal

Brain Structure and FunctionSpringer Journals

Published: Sep 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off