What really happens if the positive definiteness requirement on the covariance matrix of returns is relaxed in efficient portfolio selection?

What really happens if the positive definiteness requirement on the covariance matrix of returns... The Markowitz critical line method for mean–variance portfolio construction has remained highly influential today, since its introduction to the finance world six decades ago. The Markowitz algorithm is so versatile and computationally efficient that it can accommodate any number of linear constraints in addition to full allocations of investment funds and disallowance of short sales. For the Markowitz algorithm to work, the covariance matrix of returns, which is positive semi-definite, need not be positive definite. As a positive semi-definite matrix may not be invertible, it is intriguing that the Markowitz algorithm always works, although matrix inversion is required in each step of the iterative procedure involved. By examining some relevant algebraic features in the Markowitz algorithm, this paper is able to identify and explain intuitively the consequences of relaxing the positive definiteness requirement, as well as drawing some implications from the perspective of portfolio diversification. For the examination, the sample covariance matrix is based on insufficient return observations and is thus positive semi-definite but not positive definite. The results of the examination can facilitate a better understanding of the inner workings of the highly sophisticated Markowitz approach by the many investors who use it as a tool to assist portfolio decisions and by the many students who are introduced pedagogically to its special cases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Financial Markets and Portfolio Management Springer Journals

What really happens if the positive definiteness requirement on the covariance matrix of returns is relaxed in efficient portfolio selection?

Loading next page...
 
/lp/springer_journal/what-really-happens-if-the-positive-definiteness-requirement-on-the-JinC6PmBFU
Publisher
Springer US
Copyright
Copyright © 2018 by Swiss Society for Financial Market Research
Subject
Business and Management; Business and Management, general; Finance, general; Management
ISSN
1934-4554
eISSN
2373-8529
D.O.I.
10.1007/s11408-018-0306-7
Publisher site
See Article on Publisher Site

Abstract

The Markowitz critical line method for mean–variance portfolio construction has remained highly influential today, since its introduction to the finance world six decades ago. The Markowitz algorithm is so versatile and computationally efficient that it can accommodate any number of linear constraints in addition to full allocations of investment funds and disallowance of short sales. For the Markowitz algorithm to work, the covariance matrix of returns, which is positive semi-definite, need not be positive definite. As a positive semi-definite matrix may not be invertible, it is intriguing that the Markowitz algorithm always works, although matrix inversion is required in each step of the iterative procedure involved. By examining some relevant algebraic features in the Markowitz algorithm, this paper is able to identify and explain intuitively the consequences of relaxing the positive definiteness requirement, as well as drawing some implications from the perspective of portfolio diversification. For the examination, the sample covariance matrix is based on insufficient return observations and is thus positive semi-definite but not positive definite. The results of the examination can facilitate a better understanding of the inner workings of the highly sophisticated Markowitz approach by the many investors who use it as a tool to assist portfolio decisions and by the many students who are introduced pedagogically to its special cases.

Journal

Financial Markets and Portfolio ManagementSpringer Journals

Published: Feb 5, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off