What Are Aquaporins For?

What Are Aquaporins For? The prime function of aquaporins (AQPs) is generally believed to be that of increasing water flow rates across membranes by raising their osmotic or hydraulic permeability. In addition, this applies to other small solutes of physiological importance. Notable applications of this ‘simple permeability hypothesis’ (SPH) have been epithelial fluid transport in animals, water exchanges associated with transpiration, growth and stress in plants, and osmoregulation in microbes. We first analyze the need for such increased permeabilities and conclude that in a range of situations at the cellular, subcellular and tissue levels the SPH cannot satisfactorily account for the presence of AQPs. The analysis includes an examination of the effects of the genetic elimination or reduction of AQPs (knockouts, antisense transgenics and null mutants). These either have no effect, or a partial effect that is difficult to explain, and we argue that they do not support the hypothesis beyond showing that AQPs are involved in the process under examination. We assume that since AQPs are ubiquitous, they must have an important function and suggest that this is the detection of osmotic and turgor pressure gradients. A mechanistic model is proposed—in terms of monomer structure and changes in the tetrameric configuration of AQPs in the membrane—for how AQPs might function as sensors. Sensors then signal within the cell to control diverse processes, probably as part of feedback loops. Finally, we examine how AQPs as sensors may serve animal, plant and microbial cells and show that this sensor hypothesis can provide an explanation of many basic processes in which AQPs are already implicated. Aquaporins are molecules in search of a function; osmotic and turgor sensors are functions in search of a molecule. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Loading next page...
 
/lp/springer_journal/what-are-aquaporins-for-myi2KAvYFo
Publisher
Springer Journals
Copyright
Copyright © 2004 by Springer-Verlag New York Inc.
Subject
Philosophy
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-003-0639-6
Publisher site
See Article on Publisher Site

Abstract

The prime function of aquaporins (AQPs) is generally believed to be that of increasing water flow rates across membranes by raising their osmotic or hydraulic permeability. In addition, this applies to other small solutes of physiological importance. Notable applications of this ‘simple permeability hypothesis’ (SPH) have been epithelial fluid transport in animals, water exchanges associated with transpiration, growth and stress in plants, and osmoregulation in microbes. We first analyze the need for such increased permeabilities and conclude that in a range of situations at the cellular, subcellular and tissue levels the SPH cannot satisfactorily account for the presence of AQPs. The analysis includes an examination of the effects of the genetic elimination or reduction of AQPs (knockouts, antisense transgenics and null mutants). These either have no effect, or a partial effect that is difficult to explain, and we argue that they do not support the hypothesis beyond showing that AQPs are involved in the process under examination. We assume that since AQPs are ubiquitous, they must have an important function and suggest that this is the detection of osmotic and turgor pressure gradients. A mechanistic model is proposed—in terms of monomer structure and changes in the tetrameric configuration of AQPs in the membrane—for how AQPs might function as sensors. Sensors then signal within the cell to control diverse processes, probably as part of feedback loops. Finally, we examine how AQPs as sensors may serve animal, plant and microbial cells and show that this sensor hypothesis can provide an explanation of many basic processes in which AQPs are already implicated. Aquaporins are molecules in search of a function; osmotic and turgor sensors are functions in search of a molecule.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off