Weld seam fitting and welding torch trajectory planning based on NURBS in intersecting curve welding

Weld seam fitting and welding torch trajectory planning based on NURBS in intersecting curve welding In the industrial applications of intersecting curve welding, in order to improve the accuracy and quality of welding, the automation program of weld seam positioning, data processing, and the actual welding is widely used. In this paper, a lot of research has been carried out, and a method based on non-uniform rational B-spline (NURBS) curve fitting is presented, while the trajectory of the welding torch is planned. The method can use the position data of the discrete weld seam points obtained by manual teaching or weld seam location. By the improved least squares method and the White rule, the outliers are eliminated and the weld seam points for intersecting curve fitting are obtained. These points are fitted based on NURBS, and then the parameter expressions of the fitted intersecting curve are given. For the purpose of obtaining the orientation of the welding torch, the coordinate system which can describe the feature of the fitted intersecting curve is established. The coordinate system is combined with the theoretical intersecting curve model and the fitted intersecting curve model and gives a novel approach to compute the orientation of the welding torch according to the position of the fitted intersecting curve. In the process of planning the welding trajectory, a fitted intersecting curve discrete algorithm based on the equal arc length principle is proposed to reduce the fluctuation of the feed rate according to the restriction of chord error. Finally, this method gives the position and orientation of the welding torch in the form of a homogeneous matrix and verifies the correctness and flexibility of the algorithm by MATLAB simulation and intersecting curve welding experiment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Weld seam fitting and welding torch trajectory planning based on NURBS in intersecting curve welding

Loading next page...
1
 
/lp/springer_journal/weld-seam-fitting-and-welding-torch-trajectory-planning-based-on-nurbs-F9N0Iqxg0M
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London Ltd., part of Springer Nature
Subject
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
ISSN
0268-3768
eISSN
1433-3015
D.O.I.
10.1007/s00170-017-1374-y
Publisher site
See Article on Publisher Site

Abstract

In the industrial applications of intersecting curve welding, in order to improve the accuracy and quality of welding, the automation program of weld seam positioning, data processing, and the actual welding is widely used. In this paper, a lot of research has been carried out, and a method based on non-uniform rational B-spline (NURBS) curve fitting is presented, while the trajectory of the welding torch is planned. The method can use the position data of the discrete weld seam points obtained by manual teaching or weld seam location. By the improved least squares method and the White rule, the outliers are eliminated and the weld seam points for intersecting curve fitting are obtained. These points are fitted based on NURBS, and then the parameter expressions of the fitted intersecting curve are given. For the purpose of obtaining the orientation of the welding torch, the coordinate system which can describe the feature of the fitted intersecting curve is established. The coordinate system is combined with the theoretical intersecting curve model and the fitted intersecting curve model and gives a novel approach to compute the orientation of the welding torch according to the position of the fitted intersecting curve. In the process of planning the welding trajectory, a fitted intersecting curve discrete algorithm based on the equal arc length principle is proposed to reduce the fluctuation of the feed rate according to the restriction of chord error. Finally, this method gives the position and orientation of the welding torch in the form of a homogeneous matrix and verifies the correctness and flexibility of the algorithm by MATLAB simulation and intersecting curve welding experiment.

Journal

The International Journal of Advanced Manufacturing TechnologySpringer Journals

Published: Nov 24, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off