Weld characterization of laser arc hybrid welding of pure copper

Weld characterization of laser arc hybrid welding of pure copper A series of experiments of high-power fiber laser-arc hybrid welding of pure copper was carried out. It could be seen that the microstructure of weld metal was obviously coarsened, and the columnar grain spacing at fusion zone and the massive grain size at heat-affected zone were both linearly increased with the increase of heat input. The weld conductivity decreased with the increase of heat input because the widening weld increased the microstructure nonuniformity of test samples. The heat input as well as welding parameter has no obvious effect on the ultimate tensile strength (UTS) of cross-weld but has obvious effect on the elongation. The UTS of all the welds was 200 MPa or so. The elongation was bigger than 20% when the heat input was in the optimization range from 250 to 380 J/cm. The decrease of the elongation was attributed to either high porosity at insufficient heat input or coarser grain at excessive heat input. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The International Journal of Advanced Manufacturing Technology Springer Journals

Weld characterization of laser arc hybrid welding of pure copper

Loading next page...
Springer London
Copyright © 2017 by Springer-Verlag London
Engineering; Industrial and Production Engineering; Media Management; Mechanical Engineering; Computer-Aided Engineering (CAD, CAE) and Design
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial