Weed Detection Using Canopy Reflection

Weed Detection Using Canopy Reflection For site-specific application of herbicides, automatic detection and evaluation of weeds is desirable. Since reflectance of crop, weeds and soil differs in the visual and near infrared wavelengths, there is potential for using reflection measurements at different wavelengths to distinguish between them. Reflectance spectra of crop and weed canopies were used to evaluate the possibilities of weed detection with reflection measurements in laboratory circumstances. Sugarbeet and maize and 7 weed species were included in the measurements. Classification into crop and weeds was possible in laboratory tests, using a limited number of wavelength band ratios. Crop and weed spectra could be separated with more than 97% correct classification. Field measurements of crop and weed reflection were conducted for testing spectral weed detection. Canopy reflection was measured with a line spectrograph in the wavelength range from 480 to 820 nm (visual to near infrared) with ambient light. The discriminant model uses a limited number of narrow wavelength bands. Over 90% of crop and weed spectra can be identified correctly, when the discriminant model is specific to the prevailing light conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Precision Agriculture Springer Journals

Weed Detection Using Canopy Reflection

Loading next page...
 
/lp/springer_journal/weed-detection-using-canopy-reflection-7XgVMvEFyp
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2002 by Kluwer Academic Publishers
Subject
Life Sciences; Agriculture; Soil Science & Conservation; Remote Sensing/Photogrammetry; Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences; Atmospheric Sciences
ISSN
1385-2256
eISSN
1573-1618
D.O.I.
10.1023/A:1013326304427
Publisher site
See Article on Publisher Site

Abstract

For site-specific application of herbicides, automatic detection and evaluation of weeds is desirable. Since reflectance of crop, weeds and soil differs in the visual and near infrared wavelengths, there is potential for using reflection measurements at different wavelengths to distinguish between them. Reflectance spectra of crop and weed canopies were used to evaluate the possibilities of weed detection with reflection measurements in laboratory circumstances. Sugarbeet and maize and 7 weed species were included in the measurements. Classification into crop and weeds was possible in laboratory tests, using a limited number of wavelength band ratios. Crop and weed spectra could be separated with more than 97% correct classification. Field measurements of crop and weed reflection were conducted for testing spectral weed detection. Canopy reflection was measured with a line spectrograph in the wavelength range from 480 to 820 nm (visual to near infrared) with ambient light. The discriminant model uses a limited number of narrow wavelength bands. Over 90% of crop and weed spectra can be identified correctly, when the discriminant model is specific to the prevailing light conditions.

Journal

Precision AgricultureSpringer Journals

Published: Oct 8, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off