Weberized Mumford-Shah Model with Bose-Einstein Photon Noise

Weberized Mumford-Shah Model with Bose-Einstein Photon Noise Human vision works equally well in a large dynamic range of light intensities, from only a few photons to typical midday sunlight. Contributing to such remarkable flexibility is a famous law in perceptual (both visual and aural) psychology and psychophysics known as Weber's Law. The current paper develops a new segmentation model based on the integration of Weber's Law and the celebrated Mumford-Shah segmentation model (Comm. Pure Appl. Math., vol. 42, pp. 577-685, 1989). Explained in detail are issues concerning why the classical Mumford-Shah model lacks light adaptivity, and why its "weberized" version can more faithfully reflect human vision's superior segmentation capability in a variety of illuminance conditions from dawn to dusk. It is also argued that the popular Gaussian noise model is physically inappropriate for the weberization procedure. As a result, the intrinsic thermal noise of photon ensembles is introduced based on Bose and Einstein's distributions in quantum statistics, which turns out to be compatible with weberization both analytically and computationally. The current paper focuses on both the theory and computation of the weberized Mumford-Shah model with Bose-Einstein noise. In particular, Ambrosio-Tortorelli's Γ-convergence approximation theory is adapted (Boll. Un. Mat. Ital. B, vol. 6, pp. 105-123, 1992), and stable numerical algorithms are developed for the associated pair of nonlinear Euler-Lagrange PDEs. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Applied Mathematics and Optimization Springer Journals

Weberized Mumford-Shah Model with Bose-Einstein Photon Noise

Loading next page...
 
/lp/springer_journal/weberized-mumford-shah-model-with-bose-einstein-photon-noise-7YCpBgSjNU
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer
Subject
Mathematics; Systems Theory, Control; Calculus of Variations and Optimal Control; Optimization; Mathematical and Computational Physics; Mathematical Methods in Physics; Numerical and Computational Methods
ISSN
0095-4616
eISSN
1432-0606
D.O.I.
10.1007/s00245-005-0850-1
Publisher site
See Article on Publisher Site

Abstract

Human vision works equally well in a large dynamic range of light intensities, from only a few photons to typical midday sunlight. Contributing to such remarkable flexibility is a famous law in perceptual (both visual and aural) psychology and psychophysics known as Weber's Law. The current paper develops a new segmentation model based on the integration of Weber's Law and the celebrated Mumford-Shah segmentation model (Comm. Pure Appl. Math., vol. 42, pp. 577-685, 1989). Explained in detail are issues concerning why the classical Mumford-Shah model lacks light adaptivity, and why its "weberized" version can more faithfully reflect human vision's superior segmentation capability in a variety of illuminance conditions from dawn to dusk. It is also argued that the popular Gaussian noise model is physically inappropriate for the weberization procedure. As a result, the intrinsic thermal noise of photon ensembles is introduced based on Bose and Einstein's distributions in quantum statistics, which turns out to be compatible with weberization both analytically and computationally. The current paper focuses on both the theory and computation of the weberized Mumford-Shah model with Bose-Einstein noise. In particular, Ambrosio-Tortorelli's Γ-convergence approximation theory is adapted (Boll. Un. Mat. Ital. B, vol. 6, pp. 105-123, 1992), and stable numerical algorithms are developed for the associated pair of nonlinear Euler-Lagrange PDEs.

Journal

Applied Mathematics and OptimizationSpringer Journals

Published: May 1, 2006

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off