Ways Toward Improving the Technology of Refractories Based on Powdered Periclase

Ways Toward Improving the Technology of Refractories Based on Powdered Periclase Periclase powders available from domestic (Magnezit JSC) and foreign manufacturers are analyzed for chemical and mineralogical composition. Domestic magnesite is shown to differ from its foreign analogs in smaller values of MgO content, CaO/SiO2 ratio, and periclase crystal size. A way toward obtaining high-quality powers involves reducing the concentration of SiO2 in magnesite to 0.2 – 0.5% and increasing the calcination temperature to 2000 – 2100°C to prepare coarse-grained periclase with a crystal size larger than 140 μm. The need for developing a technology that would enable fabrication of refractory components with tailored structural properties from periclase powder is emphasized. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Refractories and Industrial Ceramics Springer Journals

Ways Toward Improving the Technology of Refractories Based on Powdered Periclase

Loading next page...
 
/lp/springer_journal/ways-toward-improving-the-technology-of-refractories-based-on-powdered-lu00nNPILO
Publisher
Springer Journals
Copyright
Copyright © 2001 by Plenum Publishing Corporation
Subject
Materials Science; Characterization and Evaluation of Materials; Materials Science, general; Ceramics, Glass, Composites, Natural Materials
ISSN
1083-4877
eISSN
1573-9139
D.O.I.
10.1023/A:1012770513283
Publisher site
See Article on Publisher Site

Abstract

Periclase powders available from domestic (Magnezit JSC) and foreign manufacturers are analyzed for chemical and mineralogical composition. Domestic magnesite is shown to differ from its foreign analogs in smaller values of MgO content, CaO/SiO2 ratio, and periclase crystal size. A way toward obtaining high-quality powers involves reducing the concentration of SiO2 in magnesite to 0.2 – 0.5% and increasing the calcination temperature to 2000 – 2100°C to prepare coarse-grained periclase with a crystal size larger than 140 μm. The need for developing a technology that would enable fabrication of refractory components with tailored structural properties from periclase powder is emphasized.

Journal

Refractories and Industrial CeramicsSpringer Journals

Published: Oct 9, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off