Wavelet series method for reconstruction and spectral estimation of laser Doppler velocimetry data

Wavelet series method for reconstruction and spectral estimation of laser Doppler velocimetry data Many techniques have been developed in order to obtain spectral density function from randomly sampled data, such as the computation of a slotted autocovariance function. Nevertheless, one may be interested in obtaining more information from laser Doppler signals than a spectral content, using more or less complex computations that can be easily conducted with an evenly sampled signal. That is the reason why reconstructing an evenly sampled signal from the original LDV data is of interest. The ability of a wavelet-based technique to reconstruct the signal with respect to statistical properties of the original one is explored, and spectral content of the reconstructed signal is given and compared with estimated spectral density function obtained through classical slotting technique. Furthermore, LDV signals taken from a screeching jet are reconstructed in order to perform spectral and bispectral analysis, showing the ability of the technique in recovering accurate information’s with only few LDV samples. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Wavelet series method for reconstruction and spectral estimation of laser Doppler velocimetry data

Loading next page...
 
/lp/springer_journal/wavelet-series-method-for-reconstruction-and-spectral-estimation-of-pvf1t0ITAv
Publisher
Springer-Verlag
Copyright
Copyright © 2011 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-011-1222-z
Publisher site
See Article on Publisher Site

Abstract

Many techniques have been developed in order to obtain spectral density function from randomly sampled data, such as the computation of a slotted autocovariance function. Nevertheless, one may be interested in obtaining more information from laser Doppler signals than a spectral content, using more or less complex computations that can be easily conducted with an evenly sampled signal. That is the reason why reconstructing an evenly sampled signal from the original LDV data is of interest. The ability of a wavelet-based technique to reconstruct the signal with respect to statistical properties of the original one is explored, and spectral content of the reconstructed signal is given and compared with estimated spectral density function obtained through classical slotting technique. Furthermore, LDV signals taken from a screeching jet are reconstructed in order to perform spectral and bispectral analysis, showing the ability of the technique in recovering accurate information’s with only few LDV samples.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 28, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off