Wavelet Analysis of Nonequilibrium Ionic Currents in Human Heart Sodium Channel (hH1a)

Wavelet Analysis of Nonequilibrium Ionic Currents in Human Heart Sodium Channel (hH1a) Nonequilibrium response spectroscopy (NRS), the technique of using rapidly fluctuating voltage pulses in the study of ion channels, is applied here. NRS is known to drive an ensemble of ion channels far from equilibrium where, it has been argued, new details of ion channel kinetics can be studied under nonequilibrium conditions. In this paper, a single-pulse NRS technique with custom-designed waveforms built from wavelets is used. The pulses are designed to produce different responses from two competing models of a human heart isoform of the sodium channel (hH1a). Experimental data using this new type of pulses are obtained through whole-cell recordings from mammalian cells (HEK 293). Wavelet analysis of the model response and the experimental data is introduced to show how these NRS pulses can aid in distinguishing the better of the two models and thus introduces another important application of this new technique. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Wavelet Analysis of Nonequilibrium Ionic Currents in Human Heart Sodium Channel (hH1a)

Loading next page...
 
/lp/springer_journal/wavelet-analysis-of-nonequilibrium-ionic-currents-in-human-heart-HVI0UKsooO
Publisher
Springer Journals
Copyright
Copyright © 2002 by Springer-Verlag New York Inc.
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-001-0188-9
Publisher site
See Article on Publisher Site

Abstract

Nonequilibrium response spectroscopy (NRS), the technique of using rapidly fluctuating voltage pulses in the study of ion channels, is applied here. NRS is known to drive an ensemble of ion channels far from equilibrium where, it has been argued, new details of ion channel kinetics can be studied under nonequilibrium conditions. In this paper, a single-pulse NRS technique with custom-designed waveforms built from wavelets is used. The pulses are designed to produce different responses from two competing models of a human heart isoform of the sodium channel (hH1a). Experimental data using this new type of pulses are obtained through whole-cell recordings from mammalian cells (HEK 293). Wavelet analysis of the model response and the experimental data is introduced to show how these NRS pulses can aid in distinguishing the better of the two models and thus introduces another important application of this new technique.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Mar 18, 2014

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off