Wavelength assignment with sparse wavelength conversion for optical multicast in WDM networks

Wavelength assignment with sparse wavelength conversion for optical multicast in WDM networks This paper addresses the problem of multicast wavelength assignment for sparse wavelength conversion (MWA-SWC) in wavelength-routed wavelength-division-multiplexing (WDM) networks. It aims to optimally allocate the available wavelength for each link of the multicast tree, given a sparse wavelength conversion network and a multicast request. To our knowledge, little research work has been done to address this problem in literature.In this paper, we propose a new technique called MWA-SWC algorithm to solve the problem. The algorithm first maps the multicast tree from the sparse conversion case to the full conversion case by making use of a novel virtual link method to carry out the tree mapping. The method provides a forward mapping to generate an auxiliary tree as well as a reverse mapping to recover the original tree. Applying the auxiliary tree, we propose a dynamic programing algorithm for the wavelength assignment (WA) aiming to minimize the number of wavelength converters (NWC) required. Simulation results show that our new algorithm outperforms both random and greedy algorithms with regard to minimizing the NWC. Testing on various scenarios by varying the number of wavelength conversion nodes in the tree has confirmed the consistency of the performance. The primary use of the MWA-SWC algorithm is for static traffic. However, it can also serve as a baseline for dynamic heuristic algorithms. Typically, the MWA-SWC algorithm will provide great benefit when the number of available wavelengths on each link of the multicast tree is relatively large and the performance advantage is significant. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Wavelength assignment with sparse wavelength conversion for optical multicast in WDM networks

Loading next page...
Kluwer Academic Publishers-Plenum Publishers
Copyright © 2006 by Springer Science+Business Media, LLC
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
Publisher site
See Article on Publisher Site


  • Multicast optical cross connects employing splitter-and-delivery switch
    Hu, W.S.; Zeng, Q.J.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial