WaveCluster: a wavelet-based clustering approach for spatial data in very large databases

WaveCluster: a wavelet-based clustering approach for spatial data in very large databases Many applications require the management of spatial data in a multidimensional feature space. Clustering large spatial databases is an important problem, which tries to find the densely populated regions in the feature space to be used in data mining, knowledge discovery, or efficient information retrieval. A good clustering approach should be efficient and detect clusters of arbitrary shape. It must be insensitive to the noise (outliers) and the order of input data. We propose WaveCluster, a novel clustering approach based on wavelet transforms, which satisfies all the above requirements. Using the multiresolution property of wavelet transforms, we can effectively identify arbitrarily shaped clusters at different degrees of detail. We also demonstrate that WaveCluster is highly efficient in terms of time complexity. Experimental results on very large datasets are presented, which show the efficiency and effectiveness of the proposed approach compared to the other recent clustering methods. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

WaveCluster: a wavelet-based clustering approach for spatial data in very large databases

Loading next page...
 
/lp/springer_journal/wavecluster-a-wavelet-based-clustering-approach-for-spatial-data-in-OlqHktHwP4
Publisher
Springer-Verlag
Copyright
Copyright © 2000 by Springer-Verlag Berlin Heidelberg
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s007780050009
Publisher site
See Article on Publisher Site

Abstract

Many applications require the management of spatial data in a multidimensional feature space. Clustering large spatial databases is an important problem, which tries to find the densely populated regions in the feature space to be used in data mining, knowledge discovery, or efficient information retrieval. A good clustering approach should be efficient and detect clusters of arbitrary shape. It must be insensitive to the noise (outliers) and the order of input data. We propose WaveCluster, a novel clustering approach based on wavelet transforms, which satisfies all the above requirements. Using the multiresolution property of wavelet transforms, we can effectively identify arbitrarily shaped clusters at different degrees of detail. We also demonstrate that WaveCluster is highly efficient in terms of time complexity. Experimental results on very large datasets are presented, which show the efficiency and effectiveness of the proposed approach compared to the other recent clustering methods.

Journal

The VLDB JournalSpringer Journals

Published: Feb 1, 2000

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off