Watermarking relational data: framework, algorithms and analysis

Watermarking relational data: framework, algorithms and analysis We enunciate the need for watermarking database relations to deter data piracy, identify the characteristics of relational data that pose unique challenges for watermarking, and delineate desirable properties of a watermarking system for relational data. We then present an effective watermarking technique geared for relational data. This technique ensures that some bit positions of some of the attributes of some of the tuples contain specific values. The specific bit locations and values are algorithmically determined under the control of a secret key known only to the owner of the data. This bit pattern constitutes the watermark. Only if one has access to the secret key can the watermark be detected with high probability. Detecting the watermark requires access neither to the original data nor the watermark, and the watermark can be easily and efficiently maintained in the presence of insertions, updates, and deletions. Our analysis shows that the proposed technique is robust against various forms of malicious attacks as well as benign updates to the data. Using an implementation running on DB2, we also show that the algorithms perform well enough to be used in real-world applications. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Watermarking relational data: framework, algorithms and analysis

Loading next page...
 
/lp/springer_journal/watermarking-relational-data-framework-algorithms-and-analysis-8f4XarbTOh
Publisher
Springer-Verlag
Copyright
Copyright © 2003 by Springer-Verlag
Subject
ComputerScience
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-003-0097-x
Publisher site
See Article on Publisher Site

Abstract

We enunciate the need for watermarking database relations to deter data piracy, identify the characteristics of relational data that pose unique challenges for watermarking, and delineate desirable properties of a watermarking system for relational data. We then present an effective watermarking technique geared for relational data. This technique ensures that some bit positions of some of the attributes of some of the tuples contain specific values. The specific bit locations and values are algorithmically determined under the control of a secret key known only to the owner of the data. This bit pattern constitutes the watermark. Only if one has access to the secret key can the watermark be detected with high probability. Detecting the watermark requires access neither to the original data nor the watermark, and the watermark can be easily and efficiently maintained in the presence of insertions, updates, and deletions. Our analysis shows that the proposed technique is robust against various forms of malicious attacks as well as benign updates to the data. Using an implementation running on DB2, we also show that the algorithms perform well enough to be used in real-world applications.

Journal

The VLDB JournalSpringer Journals

Published: Aug 1, 2003

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off