Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV

Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of... A digital large-format long-distance micro-particle image velocimetry system (μ-PIV) was developed to measure the wall-shear-stress and the near-wall flow properties in a laminar, transitional and turbulent boundary layer flow along a flat plate, non-intrusively with high accuracy and spatial resolution. To achieve the desired measurement accuracy and spatial resolution, all experimental limitations associated with the seeding, light-sheet, out-of-focus particles, optical aberrations and distortions were successfully solved and various spatial correlation image analysis approaches based on the two-point or single-pixel ensemble correlation were developed, analyzed and compared with the state-of-the-art spatial correlation techniques. The instrument is well suited to prove fundamental fluid mechanical hypotheses such as the universality of the constants κ and B of the logarithmic law. However, for the analysis of flows at large Reynolds and Mach numbers, where small spatial dimensions and strong flow gradients prevent accurate measurements, this technique can be applied as well. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV

Loading next page...
 
/lp/springer_journal/wall-shear-stress-and-near-wall-turbulence-measurements-up-to-single-1Cwmvd20De
Publisher
Springer-Verlag
Copyright
Copyright © 2006 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-006-0167-0
Publisher site
See Article on Publisher Site

Abstract

A digital large-format long-distance micro-particle image velocimetry system (μ-PIV) was developed to measure the wall-shear-stress and the near-wall flow properties in a laminar, transitional and turbulent boundary layer flow along a flat plate, non-intrusively with high accuracy and spatial resolution. To achieve the desired measurement accuracy and spatial resolution, all experimental limitations associated with the seeding, light-sheet, out-of-focus particles, optical aberrations and distortions were successfully solved and various spatial correlation image analysis approaches based on the two-point or single-pixel ensemble correlation were developed, analyzed and compared with the state-of-the-art spatial correlation techniques. The instrument is well suited to prove fundamental fluid mechanical hypotheses such as the universality of the constants κ and B of the logarithmic law. However, for the analysis of flows at large Reynolds and Mach numbers, where small spatial dimensions and strong flow gradients prevent accurate measurements, this technique can be applied as well.

Journal

Experiments in FluidsSpringer Journals

Published: Jul 21, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off