Wall-climbing robot for non-destructive evaluation using impact-echo and metric learning SVM

Wall-climbing robot for non-destructive evaluation using impact-echo and metric learning SVM The impact-echo (IE) acoustic inspection method is a non-destructive evaluation technique, which has been widely applied to detect the defects, structural deterioration level, and thickness of plate-like concrete structures. This paper presents a novel climbing robot, namely Rise-Rover, to perform automated IE signal collection from concrete structures with IE signal analyzing based on machine learning techniques. Rise-Rover is our new generation robot, and it has a novel and enhanced absorption system to support heavy load, and crawler-like suction cups to maintain high mobility performance while crossing small grooves. Moreover, the design enables a seamless transition between ground and wall. This paper applies the fast Fourier transform and wavelet transform for feature detection from collected IE signals. A distance metric learning based support vector machine approach is newly proposed to automatically classify the IE signals. With the visual-inertial odometry of the robot, the detected flaws of inspection area on the concrete plates are visualized in 2D/3D. Field tests on a concrete bridge deck demonstrate the efficiency of the proposed robot system in automatic health condition assessment for concrete structures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Intelligent Robotics and Applications Springer Journals

Wall-climbing robot for non-destructive evaluation using impact-echo and metric learning SVM

Loading next page...
 
/lp/springer_journal/wall-climbing-robot-for-non-destructive-evaluation-using-impact-echo-02MFATNsfl
Publisher
Springer Singapore
Copyright
Copyright © 2017 by Springer Nature Singapore Pte Ltd.
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Control, Robotics, Mechatronics; User Interfaces and Human Computer Interaction; Manufacturing, Machines, Tools; Electronics and Microelectronics, Instrumentation
ISSN
2366-5971
eISSN
2366-598X
D.O.I.
10.1007/s41315-017-0028-4
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial