Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials

Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials Short-length piezoelectric beams were placed in the wake of a circular cylinder at high Reynolds numbers to evaluate their performance as energy generators. The coherent vortical structures present in this flow generate a periodic forcing on the beam which when tuned to its resonant frequency produces maximum output voltage. There are two mechanisms that contribute to the driving forcing of the beam. The first mechanism is the impingement of induced flow by the passing vortices on one side of the beam, and the second is the low pressure core region of the vortices which is present at the opposite side of the beam. The sequence of these two mechanisms combined with the resonating conditions of the beam generated maximum energy output which was also found to vary with the location in the wake. The maximum power output was measured when the tip of the beam is about two diameters downstream of the cylinder. This power drops off the center line of the wake and decays with downstream distance as (x/D)−3/2. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials

Loading next page...
Copyright © 2010 by Springer-Verlag
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial