Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials

Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials Short-length piezoelectric beams were placed in the wake of a circular cylinder at high Reynolds numbers to evaluate their performance as energy generators. The coherent vortical structures present in this flow generate a periodic forcing on the beam which when tuned to its resonant frequency produces maximum output voltage. There are two mechanisms that contribute to the driving forcing of the beam. The first mechanism is the impingement of induced flow by the passing vortices on one side of the beam, and the second is the low pressure core region of the vortices which is present at the opposite side of the beam. The sequence of these two mechanisms combined with the resonating conditions of the beam generated maximum energy output which was also found to vary with the location in the wake. The maximum power output was measured when the tip of the beam is about two diameters downstream of the cylinder. This power drops off the center line of the wake and decays with downstream distance as (x/D)−3/2. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Wake of a cylinder: a paradigm for energy harvesting with piezoelectric materials

Loading next page...
 
/lp/springer_journal/wake-of-a-cylinder-a-paradigm-for-energy-harvesting-with-piezoelectric-xtIa380pp2
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-010-0871-7
Publisher site
See Article on Publisher Site

Abstract

Short-length piezoelectric beams were placed in the wake of a circular cylinder at high Reynolds numbers to evaluate their performance as energy generators. The coherent vortical structures present in this flow generate a periodic forcing on the beam which when tuned to its resonant frequency produces maximum output voltage. There are two mechanisms that contribute to the driving forcing of the beam. The first mechanism is the impingement of induced flow by the passing vortices on one side of the beam, and the second is the low pressure core region of the vortices which is present at the opposite side of the beam. The sequence of these two mechanisms combined with the resonating conditions of the beam generated maximum energy output which was also found to vary with the location in the wake. The maximum power output was measured when the tip of the beam is about two diameters downstream of the cylinder. This power drops off the center line of the wake and decays with downstream distance as (x/D)−3/2.

Journal

Experiments in FluidsSpringer Journals

Published: Apr 8, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off