Wake-boundary layer interaction subject to convex and concave curvatures and adverse pressure gradient

Wake-boundary layer interaction subject to convex and concave curvatures and adverse pressure... Measurements of mean velocity and turbulent quantities have been carried out when the wake of a symmetrical airfoil interacts with the boundary layer on the (i) walls of a straight duct/diffuser and (ii) convex and concave walls of a curved duct/diffuser. The effects of adverse pressure gradient and of curvatures on the interaction are studied separately and in combination. Six cases are considered, viz. with (i) neither pressure gradient nor curvature, (ii) adverse pressure gradient and no curvature, (iii) and (iv) convex curvature with zero and adverse pressure gradients, respectively, (v) and (vi) concave curvature with zero and adverse pressure gradients, respectively. For the flows with curvature, the curvature parameter δ/R is 0.023, and for the flows with adverse pressure gradient, the Clauser pressure gradient parameter β is 0.62. The individual influences of adverse pressure gradient and convex and concave curvatures on the boundary layer are similar to those observed by earlier investigations. It is further observed that the combined effect of concave/convex curvature and the adverse pressure gradient causes higher turbulence intensities than the sum of the individual effects. The effect of curvature is to make the wake asymmetric, and in combination with adverse pressure gradient the asymmetry increases. It is observed that the adverse pressure gradient causes faster wake–boundary-layer interaction. Comparing measurements in a straight duct, a curved duct, a curved diffuser and a straight diffuser, it is seen that the convex curvature reduces the boundary layer thickness. The asymmetry in wake development compensates for this effect and the wake–boundary-layer interaction on a convex surface is almost the same as that on a straight surface. In the case of interaction with the boundary layer on a concave surface, the curvature increases the boundary layer thickness and causes enhanced turbulence intensities. However, the asymmetry in wake is such that the extent of wake is lower towards the boundary layer side. As a result, the wake–boundary-layer interaction on concave surface is almost the same as on a straight surface. The interaction is faster in the presence of adverse pressure gradient. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Wake-boundary layer interaction subject to convex and concave curvatures and adverse pressure gradient

Loading next page...
 
/lp/springer_journal/wake-boundary-layer-interaction-subject-to-convex-and-concave-Fl13vND09Y
Publisher
Springer-Verlag
Copyright
Copyright © 2001 by Springer-Verlag Berlin Heidelberg
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s003480100337
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial