Vortex shedding from tapered, triangular plates: taper and aspect ratio effects

Vortex shedding from tapered, triangular plates: taper and aspect ratio effects Further experiments on features of the vortex shedding from tapered flat plates normal to an airstream are described. The work extends that of Castro and Rogers (2002) and concentrates on the study of the effects of varying the spanwise aspect ratio for a fixed shape plate, by appropriate adjustment of end-plates, and of the nature of the shedding as the degree of taper becomes very large, so that the body is more like a triangular plate—e.g. an isosceles triangle—than a slightly tapered plate. With the taper ratio TR defined as the ratio of plate length to average cross-stream width, the paper concentrates on the range 0.58<TR<60. Reynolds numbers, based on the average plate width, exceed 104. It is confirmed that for a small enough taper ratio the geometrical three-dimensionality is sufficiently strong that all signs of periodic vortex shedding cease. For all other cases, however, the flow at different locations along the span can vary substantially, depending on taper. There appear to be at least four different regimes, each appropriate for a different range of taper ratio. These various regimes are described. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Vortex shedding from tapered, triangular plates: taper and aspect ratio effects

Loading next page...
 
/lp/springer_journal/vortex-shedding-from-tapered-triangular-plates-taper-and-aspect-ratio-YAdXzt04UE
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Engineering
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-004-0795-1
Publisher site
See Article on Publisher Site

Abstract

Further experiments on features of the vortex shedding from tapered flat plates normal to an airstream are described. The work extends that of Castro and Rogers (2002) and concentrates on the study of the effects of varying the spanwise aspect ratio for a fixed shape plate, by appropriate adjustment of end-plates, and of the nature of the shedding as the degree of taper becomes very large, so that the body is more like a triangular plate—e.g. an isosceles triangle—than a slightly tapered plate. With the taper ratio TR defined as the ratio of plate length to average cross-stream width, the paper concentrates on the range 0.58<TR<60. Reynolds numbers, based on the average plate width, exceed 104. It is confirmed that for a small enough taper ratio the geometrical three-dimensionality is sufficiently strong that all signs of periodic vortex shedding cease. For all other cases, however, the flow at different locations along the span can vary substantially, depending on taper. There appear to be at least four different regimes, each appropriate for a different range of taper ratio. These various regimes are described.

Journal

Experiments in FluidsSpringer Journals

Published: Apr 3, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off