Vortex dynamics and mass entrainment in turbulent lobed jets with and without lobe deflection angles

Vortex dynamics and mass entrainment in turbulent lobed jets with and without lobe deflection angles Passive control of jet flows in order to enhance mixing and entrainment is of wide applicative interest. Our purpose is to develop new air diffusers for HVAC systems, by using lobed geometry nozzles, in order to ameliorate users the thermal comfort. Two turbulent 6-lobed air jets with and without lobe deflection angles were studied experimentally and compared with a reference circular jet having the same initial Reynolds number. The main objective was to analyze the modifications occurring in the vortex dynamics of the flow, firstly by replacing a circular tube with a straight lobed tube, and secondly by a lobed tube having a double inclination of the lobes. Rapid visualizations of the flows and hot-wire measurements of the streamwise velocity spectra allow understanding the vortex roll-up mechanisms. Unlike the circular jet, where the primary rings are continuous, the Kelvin–Helmholtz vortices in the lobed jet flows were found to be discontinuous. The resulting “ring segments” detach at different frequencies whether they are shed in the lobe troughs or at the lobe sides. One explanation relies on the strong variation of the exit plane curvature. Additionally, a speculative scenario of the vortical dynamics is advanced by the authors. The discontinuous nature of the K–H vortices enables the development of secondary streamwise structures, non-influenced by the passage of the primary structures as in the case of the circular jet. Thus, the momentum flux transport role played by the streamwise structures is rendered more efficient and leads to a spectacular increase in the entrainment rate in the initial region. The amount of fluid being entrained in the lobed jet by the streamwise structures is drastically amplified by the double inclination of the nozzle exit boundary. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Vortex dynamics and mass entrainment in turbulent lobed jets with and without lobe deflection angles

Loading next page...
 
/lp/springer_journal/vortex-dynamics-and-mass-entrainment-in-turbulent-lobed-jets-with-and-fBWGGkql8Z
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer-Verlag
Subject
Engineering; Engineering Thermodynamics, Heat and Mass Transfer; Fluid- and Aerodynamics; Engineering Fluid Dynamics
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-009-0762-y
Publisher site
See Article on Publisher Site

Abstract

Passive control of jet flows in order to enhance mixing and entrainment is of wide applicative interest. Our purpose is to develop new air diffusers for HVAC systems, by using lobed geometry nozzles, in order to ameliorate users the thermal comfort. Two turbulent 6-lobed air jets with and without lobe deflection angles were studied experimentally and compared with a reference circular jet having the same initial Reynolds number. The main objective was to analyze the modifications occurring in the vortex dynamics of the flow, firstly by replacing a circular tube with a straight lobed tube, and secondly by a lobed tube having a double inclination of the lobes. Rapid visualizations of the flows and hot-wire measurements of the streamwise velocity spectra allow understanding the vortex roll-up mechanisms. Unlike the circular jet, where the primary rings are continuous, the Kelvin–Helmholtz vortices in the lobed jet flows were found to be discontinuous. The resulting “ring segments” detach at different frequencies whether they are shed in the lobe troughs or at the lobe sides. One explanation relies on the strong variation of the exit plane curvature. Additionally, a speculative scenario of the vortical dynamics is advanced by the authors. The discontinuous nature of the K–H vortices enables the development of secondary streamwise structures, non-influenced by the passage of the primary structures as in the case of the circular jet. Thus, the momentum flux transport role played by the streamwise structures is rendered more efficient and leads to a spectacular increase in the entrainment rate in the initial region. The amount of fluid being entrained in the lobed jet by the streamwise structures is drastically amplified by the double inclination of the nozzle exit boundary.

Journal

Experiments in FluidsSpringer Journals

Published: Oct 25, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off