Vortex dynamics and associated fluid forcing in the near wake of a light and heavy tethered sphere in uniform flow

Vortex dynamics and associated fluid forcing in the near wake of a light and heavy tethered... Time-resolved particle image velocimetry measurements of vortex-induced vibrations of a negatively (“heavy”) and positively (“light”) buoyant tethered sphere in uniform flow, and its wake characteristics were performed in a closed-loop water channel. Experiments for both spheres were performed at similar bulk velocities, ranging between 0.048 < U < 0.32 m/s, corresponding to reduced velocities, 2.2 < U *  < 13.5. Initially stationary, with increasing U, the amplitude response displayed periodic oscillations beyond the Hopf bifurcation as a result of “lock-in” between vortex shedding and the natural structural frequency. However, while the heavy sphere’s amplitude decreased beyond U *  = 7.0, the light sphere’s amplitude continuously increased. In the periodic oscillation region, flow field characteristics in the wakes of both spheres (at comparable U * ) were similar, characterized by alternately shed hairpin vortices having a horizontal symmetry plane. Primary vortex trajectories in the frame of reference of the sphere collapsed for different U * (but not for different m * ) when scaled by f 2,s/U, where f 2,s is the sphere’s transverse oscillation frequency. This allows determination of vortex positions based on sphere dynamics and bulk flow conditions only. Associated vortex convection velocities as a function of downstream position from the sphere also nearly collapsed when normalized by U. In addition, fluid forcing and energy transfer from fluid to sphere were estimated based on an analogy between aircraft trailing vortices and hairpin vortices. Maximum forcing occurred at vortex pinch-off. For the highest comparable U * , despite different amplitudes, total transferred energy during one oscillation period was similar for both spheres. Changes in sphere dynamics must therefore be related to differences in inertia. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Vortex dynamics and associated fluid forcing in the near wake of a light and heavy tethered sphere in uniform flow

Loading next page...
Springer Berlin Heidelberg
Copyright © 2013 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial