Vortex characteristics in laminar cavity flow at very low Mach number

Vortex characteristics in laminar cavity flow at very low Mach number In the present paper, a laminar cavity is analysed at very low Mach numbers. The characteristics of core-vortices are proposed and commented. The experiments were performed in an open subsonic wind tunnel using particle image velocimetry (PIV). A rectangular cavity with a length-to-depth ratio of 4 was used (shallow and open type). Three different Reynolds numbers, based on cavity depth and free stream velocity, were examined (Re h =4,000, 9,000 and 13,000). The upstream boundary layer was investigated using classical hot-wire anemometry and was found to be laminar. For each Reynolds number, a total of 1,000 vectors fields were acquired. The results are given in terms of conventional quantities (mean flow velocity, turbulence characteristics, Reynolds shear stress) and also in terms of vortex characteristics (such as probability density function of vortex location, vortex size and vortex circulation). Some of these vortex characteristics are then proposed in a local averaged presentation. The extraction of vortices from instantaneous flow fields has been done through the use of a home-made algorithm based on continuous wavelet analysis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experiments in Fluids Springer Journals

Vortex characteristics in laminar cavity flow at very low Mach number

Loading next page...
 
/lp/springer_journal/vortex-characteristics-in-laminar-cavity-flow-at-very-low-mach-number-L6zwTUFePP
Publisher
Springer-Verlag
Copyright
Copyright © 2004 by Springer-Verlag
Subject
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
ISSN
0723-4864
eISSN
1432-1114
D.O.I.
10.1007/s00348-004-0845-8
Publisher site
See Article on Publisher Site

Abstract

In the present paper, a laminar cavity is analysed at very low Mach numbers. The characteristics of core-vortices are proposed and commented. The experiments were performed in an open subsonic wind tunnel using particle image velocimetry (PIV). A rectangular cavity with a length-to-depth ratio of 4 was used (shallow and open type). Three different Reynolds numbers, based on cavity depth and free stream velocity, were examined (Re h =4,000, 9,000 and 13,000). The upstream boundary layer was investigated using classical hot-wire anemometry and was found to be laminar. For each Reynolds number, a total of 1,000 vectors fields were acquired. The results are given in terms of conventional quantities (mean flow velocity, turbulence characteristics, Reynolds shear stress) and also in terms of vortex characteristics (such as probability density function of vortex location, vortex size and vortex circulation). Some of these vortex characteristics are then proposed in a local averaged presentation. The extraction of vortices from instantaneous flow fields has been done through the use of a home-made algorithm based on continuous wavelet analysis.

Journal

Experiments in FluidsSpringer Journals

Published: Dec 23, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off