Volvox (Chlorophyta, Volvocales) as a model organism in developmental biology

Volvox (Chlorophyta, Volvocales) as a model organism in developmental biology Model systems based on two or more related species with different types of development are finding increasing use in current comparative embryology. Green algae of the genus Volvox offer an interesting opportunity to study sex pheromones, morphogenesis as well as the formation of a somatic cell line undergoing terminal differentiation, senescence, and death as well as a line of reproductive cells, which at first grow and then undergo a series of consecutive divisions that give rise to new organisms. However, almost all studies of the recent years were conducted on a single species, Volvox carteri f. nagariensis. The goal of this publication was to advertise the cosmopolitan alga V. aureus as a model species in developmental biology. Published data on V. aureus are briefly reviewed in comparison with the development of V. carteri and outlooks of further studies are specified. In particular, the expediency of collecting new V. aureus strains from nature to study their development in clonal culture is outlined. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Volvox (Chlorophyta, Volvocales) as a model organism in developmental biology

Loading next page...
 
/lp/springer_journal/volvox-chlorophyta-volvocales-as-a-model-organism-in-developmental-MtartgUbgb
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2009 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Animal Anatomy / Morphology / Histology; Developmental Biology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360409040079
Publisher site
See Article on Publisher Site

Abstract

Model systems based on two or more related species with different types of development are finding increasing use in current comparative embryology. Green algae of the genus Volvox offer an interesting opportunity to study sex pheromones, morphogenesis as well as the formation of a somatic cell line undergoing terminal differentiation, senescence, and death as well as a line of reproductive cells, which at first grow and then undergo a series of consecutive divisions that give rise to new organisms. However, almost all studies of the recent years were conducted on a single species, Volvox carteri f. nagariensis. The goal of this publication was to advertise the cosmopolitan alga V. aureus as a model species in developmental biology. Published data on V. aureus are briefly reviewed in comparison with the development of V. carteri and outlooks of further studies are specified. In particular, the expediency of collecting new V. aureus strains from nature to study their development in clonal culture is outlined.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Aug 13, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off