Voluntary movement reverses the effect of cathodal transcranial direct current stimulation (tDCS) on corticomotor excitability

Voluntary movement reverses the effect of cathodal transcranial direct current stimulation (tDCS)... Motor cortex activity level is a critical part of the effect of transcranial direct current stimulation (tDCS) on corticomotor excitability. Based on homeostatic plasticity, the state of the stimulated cortical area influences the direction of neuroplastic changes induced by stimuli. Owing to homeostatic plasticity, cathodal tDCS (c-tDCS) would likely have a pronounced inhibitory effect on corticomotor excitability during a motor task, compared with the resting state. To test this hypothesis, we detected motor evoked potential (MEP) amplitude changes before and during c-tDCS with voluntary movement. Twelve healthy right-handed volunteers (9 males, 27–48 years) were enrolled in the study. Subjects performed little finger abduction motor task. Passive (APB) and active (ADM) muscles were studied. MEP amplitudes were measured during resting (baseline) and movement stages, and subsequently with the contralateral M1 modulated by c-tDCS. c-tDCS caused reduced baseline MEP amplitude in the ADM (p < 0.05) and APB (p < 0.001) muscles. Sham stimulation had no effect on the baseline MEP amplitudes. MEP amplitude ratio (MEP amplitude triggered by movement/baseline MEP amplitude) was higher during c-tDCS than before c-tDCS (p < 0.01). Our results suggested that during voluntary contraction, c-tDCS has an opposite effect on corticospinal excitability compared with resting state modulation effect. This contrast effect could be related to modulation of movement preparation and execution. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Experimental Brain Research Springer Journals

Voluntary movement reverses the effect of cathodal transcranial direct current stimulation (tDCS) on corticomotor excitability

Loading next page...
 
/lp/springer_journal/voluntary-movement-reverses-the-effect-of-cathodal-transcranial-direct-z45POd0zGY
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag Berlin Heidelberg
Subject
Biomedicine; Neurosciences; Neurology
ISSN
0014-4819
eISSN
1432-1106
D.O.I.
10.1007/s00221-017-5001-9
Publisher site
See Article on Publisher Site

Abstract

Motor cortex activity level is a critical part of the effect of transcranial direct current stimulation (tDCS) on corticomotor excitability. Based on homeostatic plasticity, the state of the stimulated cortical area influences the direction of neuroplastic changes induced by stimuli. Owing to homeostatic plasticity, cathodal tDCS (c-tDCS) would likely have a pronounced inhibitory effect on corticomotor excitability during a motor task, compared with the resting state. To test this hypothesis, we detected motor evoked potential (MEP) amplitude changes before and during c-tDCS with voluntary movement. Twelve healthy right-handed volunteers (9 males, 27–48 years) were enrolled in the study. Subjects performed little finger abduction motor task. Passive (APB) and active (ADM) muscles were studied. MEP amplitudes were measured during resting (baseline) and movement stages, and subsequently with the contralateral M1 modulated by c-tDCS. c-tDCS caused reduced baseline MEP amplitude in the ADM (p < 0.05) and APB (p < 0.001) muscles. Sham stimulation had no effect on the baseline MEP amplitudes. MEP amplitude ratio (MEP amplitude triggered by movement/baseline MEP amplitude) was higher during c-tDCS than before c-tDCS (p < 0.01). Our results suggested that during voluntary contraction, c-tDCS has an opposite effect on corticospinal excitability compared with resting state modulation effect. This contrast effect could be related to modulation of movement preparation and execution.

Journal

Experimental Brain ResearchSpringer Journals

Published: Jun 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off