Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Volume thresholds for quantum fault tolerance

Volume thresholds for quantum fault tolerance We introduce finite-level concatenation threshold regions for quantum fault tolerance. These volume thresholds are regions in an error probability manifold that allow for the implemented system dynamics to satisfy a prescribed implementation inaccuracy bound at a given level of quantum error correction concatenation. Satisfying this condition constitutes our fundamental definition of fault tolerance. The prescribed bound provides a halting condition identifying the attainment of fault tolerance that allows for the determination of the optimum choice of quantum error correction code(s) and number of concatenation levels. Our method is constructed to apply to finite levels of concatenation, does not require that error proabilities consistently decrease from one concatenation level to the next, and allows for analysis, without approximations, of physical systems characterized by non-equiprobable distributions of qubit error probabilities. We demonstrate the utility of this method via a general error model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quantum Information Processing Springer Journals

Loading next page...
1
 
/lp/springer_journal/volume-thresholds-for-quantum-fault-tolerance-ILVlKAYtNZ

References (16)

Publisher
Springer Journals
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Physics; Quantum Information Technology, Spintronics; Quantum Computing; Data Structures, Cryptology and Information Theory; Quantum Physics; Mathematical Physics
ISSN
1570-0755
eISSN
1573-1332
DOI
10.1007/s11128-010-0181-2
Publisher site
See Article on Publisher Site

Abstract

We introduce finite-level concatenation threshold regions for quantum fault tolerance. These volume thresholds are regions in an error probability manifold that allow for the implemented system dynamics to satisfy a prescribed implementation inaccuracy bound at a given level of quantum error correction concatenation. Satisfying this condition constitutes our fundamental definition of fault tolerance. The prescribed bound provides a halting condition identifying the attainment of fault tolerance that allows for the determination of the optimum choice of quantum error correction code(s) and number of concatenation levels. Our method is constructed to apply to finite levels of concatenation, does not require that error proabilities consistently decrease from one concatenation level to the next, and allows for analysis, without approximations, of physical systems characterized by non-equiprobable distributions of qubit error probabilities. We demonstrate the utility of this method via a general error model.

Journal

Quantum Information ProcessingSpringer Journals

Published: May 29, 2010

There are no references for this article.