Volume-Activated Chloride Currents in Fetal Human Nasopharyngeal Epithelial Cells

Volume-Activated Chloride Currents in Fetal Human Nasopharyngeal Epithelial Cells Volume-activated chloride channels have been studied by us extensively in human nasopharyngeal carcinoma cells. However, the chloride channels in the counterpart of the carcinoma cells have not been investigated. In this study, volume-activated chloride currents (Icl,vol) were characterized in normal fetal human nasopharyngeal epithelial cells using the whole-cell patch-clamp technique. Under isotonic conditions, nasopharyngeal epithelial cells displayed only a weak background current. Exposure to 47% hypotonic solution activated a volume-sensitive current. The reversal potential of the current was close to the calculated equilibrium potential for Cl−. The peak values of the hypotonicity-activated current at +80 mV ranged from 0.82 to 2.71 nA in 23 cells. Further analysis indicated that the density of the hypotonicity-activated current in most cells (18/23) was smaller than 60 pA/pF. Only five cells presented a current larger than 60 pA/pF. The hypotonicity-activated current was independent of the exogenous ATP. Chloride channel inhibitors ATP, tamoxifen and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), inhibited the current dramatically. The anion permeability of the hypotonicity-activated chloride channels was I− > Br− > Cl− > gluconate. Unexpectedly, in isotonic conditions, ATP (10 mM) activated an inward-rectified current, which had not been observed in the nasopharyngeal carcinoma cells. These results suggest that, under hypotonic challenges, fetal human nasopharyngeal epithelial cells can produce Icl,vol, which might be involved in cell volume regulation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Volume-Activated Chloride Currents in Fetal Human Nasopharyngeal Epithelial Cells

Loading next page...
 
/lp/springer_journal/volume-activated-chloride-currents-in-fetal-human-nasopharyngeal-B0SUb0O0N9
Publisher
Springer-Verlag
Copyright
Copyright © 2012 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-012-9419-5
Publisher site
See Article on Publisher Site

Abstract

Volume-activated chloride channels have been studied by us extensively in human nasopharyngeal carcinoma cells. However, the chloride channels in the counterpart of the carcinoma cells have not been investigated. In this study, volume-activated chloride currents (Icl,vol) were characterized in normal fetal human nasopharyngeal epithelial cells using the whole-cell patch-clamp technique. Under isotonic conditions, nasopharyngeal epithelial cells displayed only a weak background current. Exposure to 47% hypotonic solution activated a volume-sensitive current. The reversal potential of the current was close to the calculated equilibrium potential for Cl−. The peak values of the hypotonicity-activated current at +80 mV ranged from 0.82 to 2.71 nA in 23 cells. Further analysis indicated that the density of the hypotonicity-activated current in most cells (18/23) was smaller than 60 pA/pF. Only five cells presented a current larger than 60 pA/pF. The hypotonicity-activated current was independent of the exogenous ATP. Chloride channel inhibitors ATP, tamoxifen and 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), inhibited the current dramatically. The anion permeability of the hypotonicity-activated chloride channels was I− > Br− > Cl− > gluconate. Unexpectedly, in isotonic conditions, ATP (10 mM) activated an inward-rectified current, which had not been observed in the nasopharyngeal carcinoma cells. These results suggest that, under hypotonic challenges, fetal human nasopharyngeal epithelial cells can produce Icl,vol, which might be involved in cell volume regulation.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Feb 21, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off