Voltage Gating of Gap Junctions in Cochlear Supporting Cells: Evidence for Nonhomotypic Channels

Voltage Gating of Gap Junctions in Cochlear Supporting Cells: Evidence for Nonhomotypic Channels The organ of Corti has been found to have multiple gap junction subunits, connexins, which are localized solely in nonsensory supporting cells. Connexin mutations can induce sensorineural deafness. However, the characteristics and functions of inner ear gap junctions are not well known. In the present study, the voltage-dependence of gap junctional conductance (G j ) in cochlear supporting cells was examined by the double voltage clamp technique. Multiple types of asymmetric voltage dependencies were found for both nonjunctional membrane voltage (V m ) and transjunctional (V j ) voltage. Responses for each type of voltage dependence were categorized into four groups. The first two groups showed rectification that was polarity dependent. The third group exhibited rectification with either voltage polarity, i.e., these cells possessed a bell-shaped G j -V j or G j -V m function. The rectification due to V j had fast and slow components. On the other hand, V m -dependent gating was fast (<5 msec), but stable. Finally, a group was found that evidenced no voltage dependence, although the absence of V j dependence did not preclude V m dependence and vice versa. In fact, for all groups V j sensitivity could be independent of V m sensitivity. The data show that most gap junctional channels in the inner ear have asymmetric voltage gating, which is indicative of heterogeneous coupling and may result from heterotypic channels or possibly heteromeric configurations. This heterogeneous coupling implies that single connexin gene mutations may affect the normal physiological function of gap junctions that are not limited to homotypic configurations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Voltage Gating of Gap Junctions in Cochlear Supporting Cells: Evidence for Nonhomotypic Channels

Loading next page...
 
/lp/springer_journal/voltage-gating-of-gap-junctions-in-cochlear-supporting-cells-evidence-piklMVDR8M
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 2000 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002320001051
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial