Voltage-Dependent Anion Channel of Arabidopsis Hypocotyls: Nucleotide Regulation and Pharmacological Properties

Voltage-Dependent Anion Channel of Arabidopsis Hypocotyls: Nucleotide Regulation and... Plasma membrane anion channels are thought to play important roles in osmoregulation and signal transduction in higher plant cells. Knowledge of their pharmacology and regulation is of importance to unravel their physiological functions. In this study, we explore the pharmacological properties and the nucleotide regulation of the voltage-dependent anion channel of Arabidopsis hypocotyls. The pharmacological profile of this channel is characterized by a low sensitivity to most anion channel blockers. It is inhibited by niflumic acid with an IC50 of 80 μm, but poorly sensitive to IAA-94 and NPPB and insensitive to 9-AC and DIDS. Nucleotides alter the amplitude, the kinetics and the voltage-dependence of the channel. The main effect of nucleotides is a shift of the voltage-dependent gate of the channel toward depolarized potentials leading to a strong reduction of the current amplitude. This regulation does not require ATP hydrolysis as nonhydrolyzable ATP analogues—AMPPNP and ATPγS—also regulate the anion current. This suggests that a nucleotide binding site is involved in the regulation. The study of the properties of this putative nucleotide binding site reveals that (i) ATP regulates the channel with an EC50 of 0.7 mm, (ii) adenyl nucleotides modulate the channel with the following order of effectiveness: ATP > ADP ≫ AMP, and (iii) thiophosphate nucleotide analogues are the most potent agonists with EC50 in the range of 80 μm. The hypothesis that this regulation may couple the electrical properties of the membrane with the metabolic status of the cell is discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Voltage-Dependent Anion Channel of Arabidopsis Hypocotyls: Nucleotide Regulation and Pharmacological Properties

Loading next page...
Copyright © 1997 by Springer-Verlag New York Inc.
Life Sciences; Biochemistry, general; Human Physiology
Publisher site
See Article on Publisher Site

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial