Volcanic activity on Io and its influence on the dynamics of the Jovian magnetosphere observed by EXCEED/Hisaki in 2015

Volcanic activity on Io and its influence on the dynamics of the Jovian magnetosphere observed by... Jupiter’s moon Io, which orbits deep inside the magnetosphere, is the most geologically active object in the solar system. Kurdalagon Patera, a volcano on Io, erupted in 2015 and became a substantial source of Jovian magnetospheric plasma. Based on Earth-orbiting spacecraft observations, Io plasma torus (IPT) exhibited the peak intensity (nearly double) of ionic sulfur emissions roughly 2 month later, followed by a decay phase. This environmental change provides a unique opportunity to determine how the more heavily loaded magnetosphere behaves. Indeed, the extreme ultraviolet spectroscope for exospheric dynamics onboard the Earth-orbiting spacecraft Hisaki witnessed the whole interval via aurora and IPT observations. A simple-minded idea would be that the centrifugal force acting on fast co-rotating magnetic flux tubes loaded with heavier contents intensifies their outward transport. At the same time, there must be increased inward convection to conserve the magnetic flux. The latter could be accompanied by (1) increased inward velocity of field lines, (2) increased frequency of inward transport events, (3) increased inward flux carried per event, or (4) combinations of them. The Hisaki observations showed that the densities of major ions in the IPT increased and roughly doubled compared with pre-eruption values. The hot electron fraction, which sustains the EUV radiation from the IPT, gradually increased on a timescale of days. Pairs of intensified aurora and IPT brightening due to the enhanced supply of hot electrons from the mid-magnetosphere to the IPT upon aurora explosions observed during both quiet and active times, enabled the study of the mid-magnetosphere/IPT relationship. Hisaki observations under active Io conditions showed that: (1) the hot electron fraction in the torus gradually increased; (2) brightening pairs were more intense; (3) the energy supplied by the largest event maintained enhanced torus emission for less than a day; (4) the time delay of a torus brightening from a corresponding aurora intensification was roughly 11 h, that is, the same as during quiet times, suggesting that the inward convection speed of high-energy electrons does not change significantly.[Figure not available: see fulltext.] http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Earth, Planets and Space Springer Journals

Volcanic activity on Io and its influence on the dynamics of the Jovian magnetosphere observed by EXCEED/Hisaki in 2015

Loading next page...
Springer Berlin Heidelberg
Copyright © 2017 by The Author(s)
Earth Sciences; Earth Sciences, general; Geology; Geophysics/Geodesy
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial